Common fixed points for a class of multi-valued mappings and application to functional equations arising in dynamic programming

Downloads

DOI:

https://doi.org/10.26637/mjm201/010

Abstract

In this paper, we give an existence theorem for hybrid generalized multi-valued α-contractive type mappings which extends, improves and unifies the corresponding main result of Sintunavart and Kumam [W. Sintunavart, P. Kumam, Common fixed point theorem for hybrid generalized multi-valued contraction mappings, Appl. Math. Lett. 25 (2012), 52-57] and some main results in the literature. As an application, we give some existence and uniqueness results for solutions of a certain class of functional equations arising in dynamic programming to illustrate the efficiency and usefulness of our main result.

Keywords:

Common fixed point, Multi-valued contraction, Dynamic programming, Functional equations

Mathematics Subject Classification:

47H10, 54C60, 90C39
  • A. Aghajani School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
  • E. Pourhadi School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
  • Pages: 82-90
  • Date Published: 01-01-2014
  • Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)

R. Bellman, E.S. Lee, Functional equations arising in dynamic programming, Aequationes Math. 17 (1978), 1-18. DOI: https://doi.org/10.1007/BF01818535

M. Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl. 326 (2007), 772-782. DOI: https://doi.org/10.1016/j.jmaa.2006.03.016

D. Dori´ c, R. Lazovi´ c, Some Suzuki-type fixed point theorems for generalized multivalued mappings and applications, Fixed Point Theory Appl. 2011, 2011:40. doi:10.1186/1687-1812-2011-40. DOI: https://doi.org/10.1186/1687-1812-2011-40

W.-S. Du, Coupled fixed point theorems for nonlinear contractions satisfied MizoguchiTakahashis condition in quasiordered metric spaces, Fixed Point Theory Appl. 2010 (2010), Article ID 876372, 9 pp., doi:10.1155/2010/876372. DOI: https://doi.org/10.1155/2010/876372

W.-S. Du, Nonlinear contractive conditions for coupled cone fixed point theorems, Fixed Point Theory Appl. 2010 (2010), Article ID 190606, 16 pp., doi:10.1155/2010/190606. DOI: https://doi.org/10.1155/2010/190606

W.-S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology Appl. 159 (2012), 49-56. DOI: https://doi.org/10.1016/j.topol.2011.07.021

W.-S. Du, Some new results and generalizations in metric fixed point theory, Nonlinear Anal. 73 (2010), 1439-1446. DOI: https://doi.org/10.1016/j.na.2010.05.007

T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl. 299 (2004), 235-241. DOI: https://doi.org/10.1016/j.jmaa.2004.06.047

T. Kamran, Multivalued f-weakly Picard mappings, Nonlinear Anal. 67 (2007), 2289-2296. DOI: https://doi.org/10.1016/j.na.2006.09.010

Z. Liu, Existence theorems of solutions for certain classes of functional equations arising in dynamic programming, J. Math. Anal. Appl. 262 (2001), 529-553. DOI: https://doi.org/10.1006/jmaa.2001.7551

Z. Liu, R.P. Agarwal, S.M. Kang, On solvability of functional equations and system of functional equations arising in dynamic programming, J. Math. Anal. Appl. 297 (2004), 111-130. DOI: https://doi.org/10.1016/j.jmaa.2004.04.049

Z. Liu, L. Wang, H.K. Kim, S.M. Kang, Common fixed point theorems for contractive type mappings and their applications in dynamic programming, Bull. Korean Math. Soc. 45(3) (2008), 573-585. DOI: https://doi.org/10.4134/BKMS.2008.45.3.573

N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177-188. DOI: https://doi.org/10.1016/0022-247X(89)90214-X

S.B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488. DOI: https://doi.org/10.2140/pjm.1969.30.475

H.K.Pathak, Deepmala, Existence and uniqueness of solutions of functional equations arising in dynamic programming, Appl. Math. Comput. 218 (2012), 7221-7230. DOI: https://doi.org/10.1016/j.amc.2011.12.093

S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei. 57 (1974), 194-198.

S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983), 179-187. DOI: https://doi.org/10.1090/conm/021/729515

S.L. Singh, S.N. Mishra, Coincidence theorems for certain classes of hybrid contractions, Fixed Point Theory Appl. 2010, (2010) Article ID 898109. 14 pp, doi:10.1155/2010/898109. DOI: https://doi.org/10.1155/2010/898109

W. Sintunavart, P. Kumam, Common fixed point theorem for hybrid generalized multi-valued contraction mappings, Appl. Math. Lett. 25 (2012), 52-57. DOI: https://doi.org/10.1016/j.aml.2011.05.047

W. Sintunavart, P. Kumam, Weak condition for generalized multi-valued (f,α, β)-weak contraction mappings, Appl. Math. Lett. 24 (2011), 460-465. DOI: https://doi.org/10.1016/j.aml.2010.10.042

C. Yu-Qing, On a fixed point problem of Reich, Proc. Amer. Math. Soc. 124 (10) (1996), 3085-3088. DOI: https://doi.org/10.1090/S0002-9939-96-03428-4

  • NA

Metrics

Metrics Loading ...

Published

01-01-2014

How to Cite

A. Aghajani, and E. Pourhadi. “Common Fixed Points for a Class of Multi-Valued Mappings and Application to Functional Equations Arising in Dynamic Programming”. Malaya Journal of Matematik, vol. 2, no. 01, Jan. 2014, pp. 82-90, doi:10.26637/mjm201/010.