Invariant solutions of Barlett and Whitaker’s equations
Downloads
DOI:
https://doi.org/10.26637/mjm202/002Abstract
Lie symmetry group method is applied to study the Barlett and Whitaker’s equations. The symmetry group and its optimal system are given,and group invariant solutions associated to the symmetries are obtained. Finally the structure of the Lie algebra symmetries is determined.
Keywords:
Lie group analysis, Symmetry group, Optimal system, Invariant solutionMathematics Subject Classification:
58G35, 35C05, 22E70- Pages: 103-107
- Date Published: 01-04-2014
- Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)
Kronkvist, K., Wallentin, K., Johansson, G, Selective enzyme amplification of NAD+/NADH using coimmobilized glycerol dehydrogenase and diaphorase with amperometric detection, Analytical chimica Acta, (1994), 290-335. DOI: https://doi.org/10.1016/0003-2670(94)80120-7
Kotte, H., Grundig, B., Vorlop, K. D., Strehlitz, B. and Stottmeister, U, Methylphenazonium-modified enzyme sensor based on polymer thick films for subnanomolar detection of phenols, Analytical chemistry, 67(1995), 65-70. DOI: https://doi.org/10.1021/ac00097a011
Wang, J., Lu, J., Ly, S.Y., Vuki, M., Tian, B., Adeniyi, W.K. and Armendariz, R.A, Lab-on-a-Cable for electrochemical monitoring of phenolic contaminants. Analytical chemistry, 72(2000), 2659-2663. DOI: https://doi.org/10.1021/ac991054y
Zhenjiu, L., Deng, J. and Li. D, A new tyrosinase biosensor based on tailoring the porosity of Al2O3 sol-gel to co- immobilize tyrosinase and the mediator, Analytical chimica Acta, 407(2000), 87-96. DOI: https://doi.org/10.1016/S0003-2670(99)00807-7
Russell, I. M. and Burton, S. G. Development and demonstration of an immobilised-polyphenol oxidase bioprobe for the detection of phenolic pollutants in water, Analytical chimica Acta, 389(1999), 161-170. DOI: https://doi.org/10.1016/S0003-2670(99)00143-9
Cosnier. S., Fombon. J.J., Labbe, P. and Limosin, D, Development of a PPO-poly (amphiphilic pyrrole) electrode for on site monitoring of phenol in aqueous effluents, Sensors and Actuators , B59(1999), 134-139. DOI: https://doi.org/10.1016/S0925-4005(99)00210-5
Nistor, C., Emneus, J., Gorton, L. and Ciucu, A, Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds, Analytical chimica Acta, 387(1999), 309-326. DOI: https://doi.org/10.1016/S0003-2670(99)00071-9
Forzani, E.S., Rivas, G.A. and Solis, V.M, Kinetic behaviour of dopamine-polyphenol oxidase on electrodes of tetrathiafulvalenium tetracyanoquinodi methanide and tetracyan oquinodi methane species V. M, Journal of Electroanalytical Chemistry, 461(1999), 174-183. DOI: https://doi.org/10.1016/S0022-0728(98)00119-3
Moore, T.J., Nam, G.G., Pipes, L.C. and Coury Jr, L.A, Chemically amplified voltammetric enzyme electrodes for oxidizable pharmaceuticals, Analytical Chemistry, 66(1994), 3158-3163. DOI: https://doi.org/10.1021/ac00091a026
Lisdat, F., Wollenberg, U., Paeschke, M. and Scheller, F.W, Sensitive catecholamine measurement using a monoenzymatic recycling system, Analytical chimica Acta, 368(1998), 233-241. DOI: https://doi.org/10.1016/S0003-2670(98)00221-9
Forzani, E.S., Solis, V. and Calvo, E.J. (2000) Electrochemical behavior of polyphenol oxidase immobilized in self-assembled structures layer by layer with cationic polyallylamine. Analytical Chemisty, 72, 5300-5307. DOI: https://doi.org/10.1021/ac0003798
Toyota, T., Kuan, S.S. and Guilbault, G.G. (1985) Determination of total protein in serum using a tyrosinase enzyme electrode. Anaytical chemistry, 57, 1925-1928. DOI: https://doi.org/10.1021/ac00286a030
Kulys, J. and Schmid, R.D, A Sensitive Enzyme Electrode for Phenol Monitoring, Analytical Letters, 23(1990), 589-597. DOI: https://doi.org/10.1080/00032719008052466
Wang, J. and Varughese, K, Polishable and robust biological electrode surfaces, Analytical chemistry, 62(1990), 318-320. DOI: https://doi.org/10.1021/ac00202a019
Skladal, P, Mushroom tyrosinase-modified carbon paste electrode as an amperometric biosensor for phenols, Collection of Czechoslovak Chemical Communications, 569(1991), 1427-1433. DOI: https://doi.org/10.1135/cccc19911427
Hall, G.F., Best, D.J. and Turner, A.P.F, The determination of p-cresol in chloroform with an enzyme electrode used in the organic phase, Analytical chimica Acta, 213(1988), 113-119. DOI: https://doi.org/10.1016/S0003-2670(00)81345-8
Cosiner, S. and Innocent, C, A novel biosensor elaboration by electropolymerization of an adsorbed amphiphilic pyrrole-tyrosinase enzyme layer, Journal of Electroanalytical Chemistry, 328(1992), 361-366. DOI: https://doi.org/10.1016/0022-0728(92)80195-A
Wang, J., Nasser, N., Kwon and Cho, M.Y, Tissue bioelectrode for organic-phase enzymatic assays, Analytical chimica Acta, 2649(1992), 7-12. DOI: https://doi.org/10.1016/0003-2670(92)85290-M
Ortega, F., Dominguez, E., Pettersson J. and Gorton, L, Amperometric biosensor for the determination of phenolic compounds using a tyrosinase graphite electrode in a flow injection system, Journal of Biotechnology, 31(1993), 289-300. DOI: https://doi.org/10.1016/0168-1656(93)90075-X
Besombes, J. L., Cosnier, S., Labbe, P and Reverdy, G, Determination of Phenol and Chlorinated Phenolic Compounds Based on a PPO-Bioelectrode and Its Inhibition, Analytical Letters, 28(1995), 405-424. DOI: https://doi.org/10.1080/00032719508001106
Lutz, M., Burestedt, E., Emneus, J., Liden, H., Gobhadi, S., Gorton, L. and Marko-Varga, G, Effects of different additives on a tyrosinase based carbon paste electrode, Analytical chimica Acta, 305(1995), 8-17. DOI: https://doi.org/10.1016/0003-2670(94)00573-5
Onnerfjord, P., Emneus, J., Marko-Varga, G., Gorton, L., Ortega, F. and Dominguez, E, Tyrosinase graphite-epoxy based composite electrodes for detection of phenols, Biosensors Bioelectronics, 10(1995), 607-619. DOI: https://doi.org/10.1016/0956-5663(95)96937-T
Desprez, V. and Labbe, P, A Kinetic model for the electroenzymatic processd involved in polyphenol-oxidase- based amperometric catechol sensors, Journal of Electroanalytical Chemistry, 415(1996), 191-195. DOI: https://doi.org/10.1016/S0022-0728(96)01011-X
Bartlett, P.N. and Whitaker, R.G, Electrochemical immobilisation of enzymes: Part I. Theory, Journal of Electroanalytical Chemistry, 224(1987), 27-35. DOI: https://doi.org/10.1016/0022-0728(87)85081-7
Olver, P.J., Equivalence, invariant and symmetry, Cambridge university press, Cambridge university press, Cambridge, 1995.
Olver, P.J., Applications of Lie groups to differential equations, Second edition, GTM, Vol. 107, Springer Verlage, New York, 1993. DOI: https://doi.org/10.1007/978-1-4612-4350-2
- NA
Similar Articles
- A. Aghajani, E. Pourhadi, Common fixed points for a class of multi-valued mappings and application to functional equations arising in dynamic programming , Malaya Journal of Matematik: Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.