Ulam - Hyers stability of a 2- variable AC - mixed type functional equation in quasi - beta normed spaces: direct and fixed point methods

Downloads

DOI:

https://doi.org/10.26637/mjm202/003

Abstract

In this paper, we obtain the generalized Ulam - Hyers stability of a 2 - variable AC - mixed type functional equation
\begin{align*}
&f(2 x+y, 2 z+w)-f(2 x-y, 2 z-w)\\&=4[f(x+y, z+w)-f(x-y, z-w)]-6 f(y, w)
\end{align*}
in Quasi - Beta normed space using direct and fixed point methods.

Keywords:

Additive functional equations, cubic functional equations, Mixed type AC functional equations,, generalized Ulam - Hyers stability, fixed point

Mathematics Subject Classification:

39B52, 32B72, 32B82
  • John M. Rassias Pedagogical Department E.E., Section of Mathematics and Informatics, National and Capodistrian University of Athens, Athens 15342, Greece.
  • M. Arunkumar Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
  • S. Ramamoorthi Department of Mathematics, Arunai Engineering College, Tiruvannamalai - 606 604, TamilNadu, India.
  • S. Hemalatha Department of Mathematics, Annai Veilankanni’s College of Arts and Science, Saidapet, Chennai - 600 015, Tamil Nadu, India.
  • Pages: 108-128
  • Date Published: 01-04-2014
  • Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)

J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989. DOI: https://doi.org/10.1017/CBO9781139086578

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66. DOI: https://doi.org/10.2969/jmsj/00210064

M. Arunkumar, Matina J. Rassias, Yanhui Zhang, Ulam - Hyers stability of a 2- variable AC - mixed type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier, 1(3)(2012), 10-26.

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. DOI: https://doi.org/10.1142/4875

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl., 184(1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211

M. Eshaghi Gordji, H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, arxiv: 0812. 2939v1 Math FA, 15 Dec 2008. DOI: https://doi.org/10.1155/2009/417473

M. Eshaghi Gordji, H. Khodaei, J.M. Rassias, Fixed point methods for the stability of general quadratic functional equation, Fixed Point Theory, 12(1)(2011), 71-82. DOI: https://doi.org/10.1155/2011/454093

D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27(1941), 222-224. DOI: https://doi.org/10.1073/pnas.27.4.222

D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables,Birkhauser, Basel, 1998. DOI: https://doi.org/10.1007/978-1-4612-1790-9

S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.

Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009. DOI: https://doi.org/10.1007/978-0-387-89492-8

B.Margoils, J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126(74) (1968), 305-309. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0

M.M. Pourpasha, J. M. Rassias, R. Saadati, S.M. Vaezpour, A fixed point approach to the stability of Pexider quadratic functional equation with involution, J. Inequal. Appl., 2010, Art. ID 839639, 18 pp. DOI: https://doi.org/10.1155/2010/839639

J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal.,46(1982), 126-130. DOI: https://doi.org/10.1016/0022-1236(82)90048-9

J.M. Rassias, H.M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi-δ-normed spaces, J. Math. Anal. Appl., 356(1)(2009), 302-309. DOI: https://doi.org/10.1016/j.jmaa.2009.03.005

J.M. Rassias, K.Ravi, M.Arunkumar and B.V.Senthil Kumar, Ulam Stability of Mixed type Cubic and Additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter 13, 149 - 175.

J.M. Rassias, E. Son, H.M. Kim, On the Hyers-Ulam stability of 3D and 4D mixed type mappings, Far East J. Math. Sci., 48(1)(2011), 83-102.

Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1

Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003. DOI: https://doi.org/10.1007/978-94-017-0225-6

K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.

K. Ravi, J.M. Rassias, M. Arunkumar, R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Inequal. Pure Appl. Math., 10(4)(2009), Article 114, 29 pp.

K. Ravi, J.M. Rassias, R. Kodandan, Generalized Ulam-Hyers stability of an AQ-functional equation in quasi-β-normed spaces, Math. AEterna, 1(3-4)(2011), 217-236. DOI: https://doi.org/10.15373/2249555X/MAR2014/88

S.M. Jung, J.M. Rassias, A fixed point approach to the stability of a functional equation of the spiral of Theodorus, Fixed Point Theory Appl., 2008, Art. ID 945010, 7 pp. DOI: https://doi.org/10.1155/2008/945010

S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.

T.Z. Xu, J.M. Rassias, M.J. Rassias, W.X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl., 2010, Art. ID 423231, 23 pp. DOI: https://doi.org/10.1155/2010/423231

  • NA

Metrics

Metrics Loading ...

Published

01-04-2014

How to Cite

John M. Rassias, M. Arunkumar, S. Ramamoorthi, and S. Hemalatha. “Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation in Quasi - Beta Normed Spaces: Direct and Fixed Point Methods”. Malaya Journal of Matematik, vol. 2, no. 02, Apr. 2014, pp. 108-2, doi:10.26637/mjm202/003.