Ulam - Hyers stability of a 2- variable AC - mixed type functional equation in quasi - beta normed spaces: direct and fixed point methods
Downloads
DOI:
https://doi.org/10.26637/mjm202/003Abstract
In this paper, we obtain the generalized Ulam - Hyers stability of a 2 - variable AC - mixed type functional equation
\begin{align*}
&f(2 x+y, 2 z+w)-f(2 x-y, 2 z-w)\\&=4[f(x+y, z+w)-f(x-y, z-w)]-6 f(y, w)
\end{align*}
in Quasi - Beta normed space using direct and fixed point methods.
Keywords:
Additive functional equations, cubic functional equations, Mixed type AC functional equations,, generalized Ulam - Hyers stability, fixed pointMathematics Subject Classification:
39B52, 32B72, 32B82- Pages: 108-128
- Date Published: 01-04-2014
- Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989. DOI: https://doi.org/10.1017/CBO9781139086578
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66. DOI: https://doi.org/10.2969/jmsj/00210064
M. Arunkumar, Matina J. Rassias, Yanhui Zhang, Ulam - Hyers stability of a 2- variable AC - mixed type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier, 1(3)(2012), 10-26.
S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. DOI: https://doi.org/10.1142/4875
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl., 184(1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211
M. Eshaghi Gordji, H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, arxiv: 0812. 2939v1 Math FA, 15 Dec 2008. DOI: https://doi.org/10.1155/2009/417473
M. Eshaghi Gordji, H. Khodaei, J.M. Rassias, Fixed point methods for the stability of general quadratic functional equation, Fixed Point Theory, 12(1)(2011), 71-82. DOI: https://doi.org/10.1155/2011/454093
D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27(1941), 222-224. DOI: https://doi.org/10.1073/pnas.27.4.222
D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables,Birkhauser, Basel, 1998. DOI: https://doi.org/10.1007/978-1-4612-1790-9
S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009. DOI: https://doi.org/10.1007/978-0-387-89492-8
B.Margoils, J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126(74) (1968), 305-309. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0
M.M. Pourpasha, J. M. Rassias, R. Saadati, S.M. Vaezpour, A fixed point approach to the stability of Pexider quadratic functional equation with involution, J. Inequal. Appl., 2010, Art. ID 839639, 18 pp. DOI: https://doi.org/10.1155/2010/839639
J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal.,46(1982), 126-130. DOI: https://doi.org/10.1016/0022-1236(82)90048-9
J.M. Rassias, H.M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi-δ-normed spaces, J. Math. Anal. Appl., 356(1)(2009), 302-309. DOI: https://doi.org/10.1016/j.jmaa.2009.03.005
J.M. Rassias, K.Ravi, M.Arunkumar and B.V.Senthil Kumar, Ulam Stability of Mixed type Cubic and Additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter 13, 149 - 175.
J.M. Rassias, E. Son, H.M. Kim, On the Hyers-Ulam stability of 3D and 4D mixed type mappings, Far East J. Math. Sci., 48(1)(2011), 83-102.
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003. DOI: https://doi.org/10.1007/978-94-017-0225-6
K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
K. Ravi, J.M. Rassias, M. Arunkumar, R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Inequal. Pure Appl. Math., 10(4)(2009), Article 114, 29 pp.
K. Ravi, J.M. Rassias, R. Kodandan, Generalized Ulam-Hyers stability of an AQ-functional equation in quasi-β-normed spaces, Math. AEterna, 1(3-4)(2011), 217-236. DOI: https://doi.org/10.15373/2249555X/MAR2014/88
S.M. Jung, J.M. Rassias, A fixed point approach to the stability of a functional equation of the spiral of Theodorus, Fixed Point Theory Appl., 2008, Art. ID 945010, 7 pp. DOI: https://doi.org/10.1155/2008/945010
S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.
T.Z. Xu, J.M. Rassias, M.J. Rassias, W.X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl., 2010, Art. ID 423231, 23 pp. DOI: https://doi.org/10.1155/2010/423231
- NA
Similar Articles
- G. Murugusundaramoorthy, T. Janani, Meromorphic parabolic starlike functions with a fixed point involving Srivastava-Attiya operator , Malaya Journal of Matematik: Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.