On 3-Dissection Property

Downloads

DOI:

https://doi.org/10.26637/mjm202/004

Abstract

The purpose of this paper is to derive 3- dissection for \(\left(q^2 ; q^2\right)_{\infty}^{-1}\left(q^4 ; q^4\right)_{\infty}^{-1}, \quad\left(q^3 ; q^3\right)_{\infty}^{-1}\left(q^6 ; q^6\right)_{\infty}^{-1}\) and \(\left(q^{\frac{1}{3}} ; q^{\frac{1}{3}}\right)_{\infty}^{-1}\left(q^{\frac{2}{3}} ; q^{\frac{2}{3}}\right)_{\infty}^{-1}\).

Keywords:

Partition functions, Generating functions

Mathematics Subject Classification:

05A17, 05A15
  • M. P. Chaudhary International Scientific Research and Welfare Organization, New Delhi, India.
  • Salahuddin P.D.M College of Engineering, Bahadurgarh, Haryana, India.
  • Pages: 129-132
  • Date Published: 01-04-2014
  • Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)

H.-C.Chan, Ramanujan’s cubic continued fraction and a generalization of his most beautiful identity, Int. J. Number Theory, 6(2010), 673-680. DOI: https://doi.org/10.1142/S1793042110003150

H. Zhao and Z.Zhong, Ramanujan type congruences for a partition function,, The Electronic Journal of Combinatorics, 18(2011), 01-09. DOI: https://doi.org/10.37236/545

Z.Cao, On some dissection identities, J. Math. Anal. Appl., 365(2010), 659-667. DOI: https://doi.org/10.1016/j.jmaa.2009.11.038

J.M. Borwein, P.B. Borwein and F.G.Garvan, Some cubic modular identities of Ramanujan, Trans. Amer. Math.Soc., 343(1994),35-47. DOI: https://doi.org/10.1090/S0002-9947-1994-1243610-6

H.H. Chan and P.C. Toh, New analogues of Ramanujan’s partition identities, J. Number Theory, 130(2010), 1898-1913. DOI: https://doi.org/10.1016/j.jnt.2010.02.017

G.E.Andrews, R.Askey and R.Roy, Special Functions, Cambridge University Press, Cambridge, 1999. DOI: https://doi.org/10.1017/CBO9781107325937

B.C.Berndt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Providence, 2006. DOI: https://doi.org/10.1090/stml/034

  • NA

Metrics

Metrics Loading ...

Published

01-04-2014

How to Cite

M. P. Chaudhary, and Salahuddin. “On 3-Dissection Property”. Malaya Journal of Matematik, vol. 2, no. 02, Apr. 2014, pp. 129-32, doi:10.26637/mjm202/004.