The extended tanh method for certain system of nonlinear ordinary differential equations
Downloads
DOI:
https://doi.org/10.26637/mjm202/005Abstract
We propose a method to obtain Tanh-solution based on leading order analysis of Painlevè test. The crucial aspect is that this point of view gives “exactly truncation of the series expansion applicable to Tanh-method”. This approach gives all possible leading orders of solutions. Each branches can be treated separately and obtained closed form solutions.
Keywords:
Ordinary differential equations, Tanh-method, Singularity analysisMathematics Subject Classification:
34G20- Pages: 133-140
- Date Published: 01-04-2014
- Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)
Willy Malfliet, Solitary wave solutions of nonlinear wave equations, American Journal of Physics, 60(1992), 650-654. DOI: https://doi.org/10.1119/1.17120
Willy Malfliet & Willey Hereman, The tanh method:I. Exact solutions of nonlinear evolution and wave equations Physica Scripta, 54(1996), 563-568. DOI: https://doi.org/10.1088/0031-8949/54/6/003
Engui Fan, Extended tanh-function method and its applications to nonlinear equations, Physics Letters A, 277(2000), 212-218. DOI: https://doi.org/10.1016/S0375-9601(00)00725-8
Willy Malfliet, The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations Journal of Computational and Applied Mathematics, (2004), 529-541. DOI: https://doi.org/10.1016/S0377-0427(03)00645-9
S.A. Elwakil, S.K. El-Labany, M.A. Zahran & R. Sabry, Modified extended tanh-function method and its applications to nonlinear equations Applied Mathematics and Computation, 161(2005), 403-412. DOI: https://doi.org/10.1016/j.amc.2003.12.035
E. Yusufoglu & A. Bekir, On the extended tanh method applications of nonliear equations International Journal of Nonlinear Science, 4(2007), 10-16.
A.M. Wazwaz, The tanh method for travelling wave solutions of nonliear equations Applied Mathematics and Computation, 154(2004), 713-723. DOI: https://doi.org/10.1016/S0096-3003(03)00745-8
Ahmet Bekir, Applications of the extended tanh method for coupled nonlinear evolution equations Communications in Nonlinear Science and Numerical Simulation, 13(2008), 1748-1757. DOI: https://doi.org/10.1016/j.cnsns.2007.05.001
M.J. Ablowitz, A. Ramani & H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P-type I Journal of Mathematical Physics, 21(1980), 715-721. DOI: https://doi.org/10.1063/1.524491
B. Grammaticos, J. Moulin-Ollagnier, A. Ramani, J.M. Strelcyn & S. Wojciechowski, Integrals of quadratic ordinary differential equations in R 3 ; The Lotka Volterra system, Physica A, 163(1990), 683-722. DOI: https://doi.org/10.1016/0378-4371(90)90152-I
N.A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations Choas and Soliton Fractals, 24(2005), 1217-1231. DOI: https://doi.org/10.1016/j.chaos.2004.09.109
E.J. Parkes & B.R. Duffy, An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations, Computational Physics communications, 98(1996), 288-300. DOI: https://doi.org/10.1016/0010-4655(96)00104-X
N.K.Vitanov, On modified method of simplest equation for obtaining exact and approximate of nonlinear PDE’s: the role of simplest equation, Communication Nonlinear Science and Numerical Simulations, 16(2011), 4215-4231. DOI: https://doi.org/10.1016/j.cnsns.2011.03.035
J.H. He & X.H. Wu, Exp-function method for nonlinear wave equations, Choas, Solitons & Fractals, 30(2006), 700-708. DOI: https://doi.org/10.1016/j.chaos.2006.03.020
X.H. Wu & J.H. He, Solitary solutions, periodic solutions and compaction- like solutions using the Exp-function method, Computations Mathematical Application 54(2007), 966-986. DOI: https://doi.org/10.1016/j.camwa.2006.12.041
W.X. Ma, T. Haung & Y. Zhang, A multiple exp-function method for nonlinear differential equations and its application, Physics Scripta, 82(2010), 005—003. DOI: https://doi.org/10.1088/0031-8949/82/06/065003
W.X. Ma & E. Fan, x Linear superposition principle applying to Hirota bilinear equations, Computational Mathematics and Applications, 61(2011), 950-959. DOI: https://doi.org/10.1016/j.camwa.2010.12.043
G. Ebadi & A. Biswas, The G ′ /G- method and topological solution of K ( m,n ) equation, Communication Nonlinear Science and Numerical Simulation, 16(2011), 2377-2382. DOI: https://doi.org/10.1016/j.cnsns.2010.09.009
L. Noakes, Non-null Lie quadratics in E 3 , Journal of Mathematical Physics, 45(2004), 4334-4351. DOI: https://doi.org/10.1063/1.1803609
M.C. Nucci & K.M. Tamizhmani, Lagrangians for biological models Journal of Nonlinear Mathematical Physics 19 (2012), 1250021(23 pages). DOI: https://doi.org/10.1142/S1402925112500210
- NA
Similar Articles
- John M. Rassias, M. Arunkumar, S. Ramamoorthi , S. Hemalatha, Ulam - Hyers stability of a 2- variable AC - mixed type functional equation in quasi - beta normed spaces: direct and fixed point methods , Malaya Journal of Matematik: Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)
- John M. Rassias, M. Arunkumar, N. Mahesh Kumar , General solution and generalized Ulam-Hyers stability of a generalized 3-Dimensional AQCQ functional equation , Malaya Journal of Matematik: Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.