The extended tanh method for certain system of nonlinear ordinary differential equations

Downloads

DOI:

https://doi.org/10.26637/mjm202/005

Abstract

We propose a method to obtain Tanh-solution based on leading order analysis of Painlevè test. The crucial aspect is that this point of view gives “exactly truncation of the series expansion applicable to Tanh-method”. This approach gives all possible leading orders of solutions. Each branches can be treated separately and obtained closed form solutions.

Keywords:

Ordinary differential equations, Tanh-method, Singularity analysis

Mathematics Subject Classification:

34G20
  • K. Krishnakumar Department of Mathematics, Pondicherry University, Kalapet, Puducherry–605 014, India.
  • Pages: 133-140
  • Date Published: 01-04-2014
  • Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)

Willy Malfliet, Solitary wave solutions of nonlinear wave equations, American Journal of Physics, 60(1992), 650-654. DOI: https://doi.org/10.1119/1.17120

Willy Malfliet & Willey Hereman, The tanh method:I. Exact solutions of nonlinear evolution and wave equations Physica Scripta, 54(1996), 563-568. DOI: https://doi.org/10.1088/0031-8949/54/6/003

Engui Fan, Extended tanh-function method and its applications to nonlinear equations, Physics Letters A, 277(2000), 212-218. DOI: https://doi.org/10.1016/S0375-9601(00)00725-8

Willy Malfliet, The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations Journal of Computational and Applied Mathematics, (2004), 529-541. DOI: https://doi.org/10.1016/S0377-0427(03)00645-9

S.A. Elwakil, S.K. El-Labany, M.A. Zahran & R. Sabry, Modified extended tanh-function method and its applications to nonlinear equations Applied Mathematics and Computation, 161(2005), 403-412. DOI: https://doi.org/10.1016/j.amc.2003.12.035

E. Yusufoglu & A. Bekir, On the extended tanh method applications of nonliear equations International Journal of Nonlinear Science, 4(2007), 10-16.

A.M. Wazwaz, The tanh method for travelling wave solutions of nonliear equations Applied Mathematics and Computation, 154(2004), 713-723. DOI: https://doi.org/10.1016/S0096-3003(03)00745-8

Ahmet Bekir, Applications of the extended tanh method for coupled nonlinear evolution equations Communications in Nonlinear Science and Numerical Simulation, 13(2008), 1748-1757. DOI: https://doi.org/10.1016/j.cnsns.2007.05.001

M.J. Ablowitz, A. Ramani & H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P-type I Journal of Mathematical Physics, 21(1980), 715-721. DOI: https://doi.org/10.1063/1.524491

B. Grammaticos, J. Moulin-Ollagnier, A. Ramani, J.M. Strelcyn & S. Wojciechowski, Integrals of quadratic ordinary differential equations in R 3 ; The Lotka Volterra system, Physica A, 163(1990), 683-722. DOI: https://doi.org/10.1016/0378-4371(90)90152-I

N.A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations Choas and Soliton Fractals, 24(2005), 1217-1231. DOI: https://doi.org/10.1016/j.chaos.2004.09.109

E.J. Parkes & B.R. Duffy, An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations, Computational Physics communications, 98(1996), 288-300. DOI: https://doi.org/10.1016/0010-4655(96)00104-X

N.K.Vitanov, On modified method of simplest equation for obtaining exact and approximate of nonlinear PDE’s: the role of simplest equation, Communication Nonlinear Science and Numerical Simulations, 16(2011), 4215-4231. DOI: https://doi.org/10.1016/j.cnsns.2011.03.035

J.H. He & X.H. Wu, Exp-function method for nonlinear wave equations, Choas, Solitons & Fractals, 30(2006), 700-708. DOI: https://doi.org/10.1016/j.chaos.2006.03.020

X.H. Wu & J.H. He, Solitary solutions, periodic solutions and compaction- like solutions using the Exp-function method, Computations Mathematical Application 54(2007), 966-986. DOI: https://doi.org/10.1016/j.camwa.2006.12.041

W.X. Ma, T. Haung & Y. Zhang, A multiple exp-function method for nonlinear differential equations and its application, Physics Scripta, 82(2010), 005—003. DOI: https://doi.org/10.1088/0031-8949/82/06/065003

W.X. Ma & E. Fan, x Linear superposition principle applying to Hirota bilinear equations, Computational Mathematics and Applications, 61(2011), 950-959. DOI: https://doi.org/10.1016/j.camwa.2010.12.043

G. Ebadi & A. Biswas, The G ′ /G- method and topological solution of K ( m,n ) equation, Communication Nonlinear Science and Numerical Simulation, 16(2011), 2377-2382. DOI: https://doi.org/10.1016/j.cnsns.2010.09.009

L. Noakes, Non-null Lie quadratics in E 3 , Journal of Mathematical Physics, 45(2004), 4334-4351. DOI: https://doi.org/10.1063/1.1803609

M.C. Nucci & K.M. Tamizhmani, Lagrangians for biological models Journal of Nonlinear Mathematical Physics 19 (2012), 1250021(23 pages). DOI: https://doi.org/10.1142/S1402925112500210

  • NA

Metrics

Metrics Loading ...

Published

01-04-2014

How to Cite

K. Krishnakumar. “The Extended Tanh Method for Certain System of Nonlinear Ordinary Differential Equations”. Malaya Journal of Matematik, vol. 2, no. 02, Apr. 2014, pp. 133-40, doi:10.26637/mjm202/005.