An existence and uniqueness theorem for fuzzy H-integral equations of fractional order

Downloads

DOI:

https://doi.org/10.26637/mjm202/007

Abstract

We present an existence and uniqueness theorem for \(\mathrm{H}\) - integral equations of fractional order involving fuzzy set valued mappings of a real variable whose values are normal, convex, upper semi continuous and compactly supported fuzzy sets in \(\mathbb{R}^n\). The method of successive approximation is the main tool in our analysis.

Keywords:

Fuzzy mapping, fractional orders, Riemann-Liouville H-differentiability, Fuzzy H-integral equation, Hausdorff metric, successive approximation

Mathematics Subject Classification:

26A33, 34A07
  • Mouffak Benchohra Department of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia.
  • Abderrahmane Boukenkoul Département de Foresterie et d’Agronomie, Faculté des sciences de la vie et de l’environnement, Université Abou Bekr Belkaid, Tlemcen, Algérie.
  • Pages: 151-159
  • Date Published: 01-04-2014
  • Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)

S. Abbas, M. Benchohra and G.M. N’Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012. DOI: https://doi.org/10.1007/978-1-4614-4036-9

R.P. Agarwal, M. Benchohra, D. O’Regan and A. Ouahab, Fuzzy solutions for multi-point boundary value problems, Mem. Differential Equations Math. Phys., 35(2005), 1-14.

R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72(2010), 2859-2862. DOI: https://doi.org/10.1016/j.na.2009.11.029

R.P. Agarwal, D. O’Regan, and V. Lakshmikantham, Fuzzy Volterra integral equations: a stacking theorem approach, Appl. Anal., 83(5)(2004), 521-532. DOI: https://doi.org/10.1080/00036810410001647117

A. Arara and M. Benchohra, Fuzzy solutions for boundary value problems with integral boundary conditions, Acta Math. Univ. Comenianae, LXXV(1)(2006), 119-126.

S. Arshad and V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal., 74(2011), 3685-3693. DOI: https://doi.org/10.1016/j.na.2011.02.048

M. Benchohra and M.A. Darwish, Existence and uniqueness theorem for fuzzy integral equation of fractional order, Commun. Appl. Anal., 12(1)(2008), 13-22.

M.A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl., 311(2005), 112-119. DOI: https://doi.org/10.1016/j.jmaa.2005.02.012

M.A. Darwish and A.A. El-Bary, Existence of fractional integral equation with hysteresis, Appl. Math. Comput., 176(2006), 684-687. DOI: https://doi.org/10.1016/j.amc.2005.10.014

D. Dubois and H. Prade, Towards fuzzy differential calculus, Part 1. Integraation of fuzzy mappings, Fuzzy Sets Systems 8(1982), 1-17. DOI: https://doi.org/10.1016/0165-0114(82)90025-2

D. Dubois and H. Prade, Towards fuzzy differential calculus, Part 2. Integraation of fuzzy mappings, Fuzzy Sets Systems 8(1982), 105-116. DOI: https://doi.org/10.1016/0165-0114(82)90001-X

M. Friedman, Ma Ming and A. Kandel, Solutions to fuzzy interal equations with arbitrary kernels, Internat. J. Approx. Reason, 20(3)(1999), 249-262. DOI: https://doi.org/10.1016/S0888-613X(99)00005-5

R. Goetschel and W. Voxman, Elementary Calculus, Fuzzy Sets Systems, 18(1986), 31-43. DOI: https://doi.org/10.1016/0165-0114(86)90026-6

R. Hilfer, Applications of Fractional calculus in Physics, World Scientific, Singapore, 2000. DOI: https://doi.org/10.1142/3779

O. Kaleva, Fuzzy differential equations, Fuzzy Sets Systems 24 (1987), 301-317. DOI: https://doi.org/10.1016/0165-0114(87)90029-7

A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006.

M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.

V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.

V. Lakshmikantham and R. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor & Francis, New York, 2003. DOI: https://doi.org/10.1201/9780203011386

J. Mordeson and W. Newman, Fuzzy integral equations, Information Sciences, 87(1995), 215-229. DOI: https://doi.org/10.1016/0020-0255(95)00126-3

S. Nanda, On integration of fuzzy mappings, Fuzzy Sets Systems 32(1989), 95-101. DOI: https://doi.org/10.1016/0165-0114(89)90090-0

J. Y. Park and J.U. Jeong, A note on fuzzy integral equations, Fuzzy Sets Systems, 108(1999), 193-200. DOI: https://doi.org/10.1016/S0165-0114(97)00331-X

I. Podlubny, Fractional Differential Equations, Academic Press, New York and London, 1999.

M. L. Puri and D.A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114(1986), 409-422. DOI: https://doi.org/10.1016/0022-247X(86)90093-4

P. V. Subrahmanyam and S.K. Sudarsanam, A note on fuzzy Volterra integral equations, Fuzzy Sets Systems, 81(1996), 237-240. DOI: https://doi.org/10.1016/0165-0114(95)00180-8

V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2014

How to Cite

Mouffak Benchohra, and Abderrahmane Boukenkoul. “An Existence and Uniqueness Theorem for Fuzzy H-Integral Equations of Fractional Order”. Malaya Journal of Matematik, vol. 2, no. 02, Apr. 2014, pp. 151-9, doi:10.26637/mjm202/007.