Exact solution of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation by Adomian decomposition method
Downloads
DOI:
https://doi.org/10.26637/mjm202/008Abstract
This paper studies the exact solution of the the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation by the aid of Adomian decomposition method.
Keywords:
Exact solution, Hyperbolic Schrödinger equation, Adomian decomposition methodMathematics Subject Classification:
83C15, 35L70, 49M27- Pages: 160-164
- Date Published: 01-04-2014
- Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)
S.P. Gorz, P.K. Ockaert, P. Emplit, and M. Haelterman, Oscillatory neck instability of spatial bright solitons in hyperbolic systems, Physical Review Letters, 102(13)(2009), 134101-134104. DOI: https://doi.org/10.1103/PhysRevLett.102.134101
A. Biswas, S. Konar, Introduction to Non-Kerr Law Optical Solitons, CRC Press, Boca Raton, FL, USA, 2006. DOI: https://doi.org/10.1201/9781420011401
A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, 2009. DOI: https://doi.org/10.1007/978-3-642-00251-9
R. Hirota, Direct Method of Finding Exact Solutions of Nonlinear Evolution Equations,in: R. Bullough, P. Caudrey (Eds.), Backlund Transformations, Springer, Berlin, 1980, p. 1157.
V.O. Vakhnenko, E.J. Parkes, A.J. Morrison, A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos Soliton Fract., 17(4)(2003), 683–692. DOI: https://doi.org/10.1016/S0960-0779(02)00483-6
W. Malfliet, W. Hereman, The tanh method. I. Exact solutions of nonlinear evolution and wave equations, Phys. Scripta 54 (1996), 563-568. DOI: https://doi.org/10.1088/0031-8949/54/6/003
A.M. Wazwaz, The tanh method for travelling wave olutions of nonlinear equations, Appl. Math. Comput., 154 (3), (2004), 713-723. DOI: https://doi.org/10.1016/S0096-3003(03)00745-8
A.M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188(2)(2007), 1467-1475. DOI: https://doi.org/10.1016/j.amc.2006.11.013
E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett., A(246)(1998), 403-406. DOI: https://doi.org/10.1016/S0375-9601(98)00547-7
A. Bekir, A. Boz, Exact solutions for nonlinear evolution equations using Exp-function method, Phys. Lett., A(372)(10)(2008), 1619-1625. DOI: https://doi.org/10.1016/j.physleta.2007.10.018
G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, San Diego, 1986. DOI: https://doi.org/10.1016/B978-0-12-044375-8.50012-5
G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, 1994. DOI: https://doi.org/10.1007/978-94-015-8289-6
Y. Cherruault, Convergence of Adomian’s method, Kybernotes, 18(20)(1990), 31-38. DOI: https://doi.org/10.1108/eb005812
Y. Cherruault and G. Adomian, Decomposition methods: a new proof of convergence, Math. Comput. Modelling, 18(12)(1993), 103-106 . DOI: https://doi.org/10.1016/0895-7177(93)90233-O
A.M. Wazwaz, A reliable modification of Adomian’s decomposition method, Appl. Math. Comput., 92(1)(1998), 1-7.
A.M.Wazwaz, Partial Differential Equations: Methods and Applications, Balkema Publishers, Leiden, 2002.
A.M.Wazwaz, The modified decomposition method for analytic treatment of differential equations, Appl. Math. Comput., 173(1)(2006), 165-176. DOI: https://doi.org/10.1016/j.amc.2005.02.048
A.M. Wazwaz, A new algorithm for solving differential equations of the Lane-Emden type, Appl. Math. Comput., 118(2/3)(2001), 287-310. DOI: https://doi.org/10.1016/S0096-3003(99)00223-4
- NA
Similar Articles
- Y. V. Ravi Kumar, S. Rajender, S. V. H. N. P. Krishna Kumari, S. Sreenadh , Peristaltic pumping of a Jeffrey fluid in an asymmetric channel with permeable walls , Malaya Journal of Matematik: Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.