Exact solution of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation by Adomian decomposition method

Downloads

DOI:

https://doi.org/10.26637/mjm202/008

Abstract

This paper studies the exact solution of the the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation by the aid of Adomian decomposition method.

Keywords:

Exact solution, Hyperbolic Schrödinger equation, Adomian decomposition method

Mathematics Subject Classification:

83C15, 35L70, 49M27
  • Iftikhar Ahmed College of Mathematics and Statistics, Chongqing University, Chongqing 401331, PR China.
  • Chunlai Mu College of Mathematics and Statistics, Chongqing University, Chongqing 401331, PR China.
  • Pan Zheng College of Mathematics and Statistics, Chongqing University, Chongqing 401331, PR China.
  • Pages: 160-164
  • Date Published: 01-04-2014
  • Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)

S.P. Gorz, P.K. Ockaert, P. Emplit, and M. Haelterman, Oscillatory neck instability of spatial bright solitons in hyperbolic systems, Physical Review Letters, 102(13)(2009), 134101-134104. DOI: https://doi.org/10.1103/PhysRevLett.102.134101

A. Biswas, S. Konar, Introduction to Non-Kerr Law Optical Solitons, CRC Press, Boca Raton, FL, USA, 2006. DOI: https://doi.org/10.1201/9781420011401

A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, 2009. DOI: https://doi.org/10.1007/978-3-642-00251-9

R. Hirota, Direct Method of Finding Exact Solutions of Nonlinear Evolution Equations,in: R. Bullough, P. Caudrey (Eds.), Backlund Transformations, Springer, Berlin, 1980, p. 1157.

V.O. Vakhnenko, E.J. Parkes, A.J. Morrison, A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos Soliton Fract., 17(4)(2003), 683–692. DOI: https://doi.org/10.1016/S0960-0779(02)00483-6

W. Malfliet, W. Hereman, The tanh method. I. Exact solutions of nonlinear evolution and wave equations, Phys. Scripta 54 (1996), 563-568. DOI: https://doi.org/10.1088/0031-8949/54/6/003

A.M. Wazwaz, The tanh method for travelling wave olutions of nonlinear equations, Appl. Math. Comput., 154 (3), (2004), 713-723. DOI: https://doi.org/10.1016/S0096-3003(03)00745-8

A.M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188(2)(2007), 1467-1475. DOI: https://doi.org/10.1016/j.amc.2006.11.013

E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett., A(246)(1998), 403-406. DOI: https://doi.org/10.1016/S0375-9601(98)00547-7

A. Bekir, A. Boz, Exact solutions for nonlinear evolution equations using Exp-function method, Phys. Lett., A(372)(10)(2008), 1619-1625. DOI: https://doi.org/10.1016/j.physleta.2007.10.018

G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, San Diego, 1986. DOI: https://doi.org/10.1016/B978-0-12-044375-8.50012-5

G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, 1994. DOI: https://doi.org/10.1007/978-94-015-8289-6

Y. Cherruault, Convergence of Adomian’s method, Kybernotes, 18(20)(1990), 31-38. DOI: https://doi.org/10.1108/eb005812

Y. Cherruault and G. Adomian, Decomposition methods: a new proof of convergence, Math. Comput. Modelling, 18(12)(1993), 103-106 . DOI: https://doi.org/10.1016/0895-7177(93)90233-O

A.M. Wazwaz, A reliable modification of Adomian’s decomposition method, Appl. Math. Comput., 92(1)(1998), 1-7.

A.M.Wazwaz, Partial Differential Equations: Methods and Applications, Balkema Publishers, Leiden, 2002.

A.M.Wazwaz, The modified decomposition method for analytic treatment of differential equations, Appl. Math. Comput., 173(1)(2006), 165-176. DOI: https://doi.org/10.1016/j.amc.2005.02.048

A.M. Wazwaz, A new algorithm for solving differential equations of the Lane-Emden type, Appl. Math. Comput., 118(2/3)(2001), 287-310. DOI: https://doi.org/10.1016/S0096-3003(99)00223-4

  • NA

Metrics

Metrics Loading ...

Published

01-04-2014

How to Cite

Iftikhar Ahmed, Chunlai Mu, and Pan Zheng. “Exact Solution of the (2+1)-Dimensional Hyperbolic Nonlinear Schrödinger Equation by Adomian Decomposition Method”. Malaya Journal of Matematik, vol. 2, no. 02, Apr. 2014, pp. 160-4, doi:10.26637/mjm202/008.