Fractional integral inequalities for continuous random variables

Downloads

DOI:

https://doi.org/10.26637/mjm202/010

Abstract

By introducing new concepts on the probability theory, new integral inequalities are established for the fractional expectation and the fractional variance for continuous random variables. These inequalities generalize some interested results in [N.S. Barnett, P. Cerone, S.S. Dragomir and J. Roumeliotis: Some inequalities for the dispersion of a random variable whose p.d.f. is defined on a finite interval, J. Inequal. Pure Appl. Math., Vol. 2 Iss. 1 Art. 1 (2001), 1-18].

Keywords:

Integral inequalities, Riemann-Liouville integral, random variable, fractional dispersion, fractional variance

Mathematics Subject Classification:

26D15, 26A33, 60E15
  • Zoubir Dahmani Laboratory LPAM, Faculty SEI, UMAB, University of Mostaganem, Algeria.
  • Pages: 172-179
  • Date Published: 01-04-2014
  • Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)

A.M. Acu, F. Sofonea, C.V. Muraru, Gruss and Ostrowski type inequalities and their applications, Scientific Studies and Research: Series Mathematics and Informatics, 23(1)(2013), 5-14.

G.A. Anastassiou, M.R. Hooshmandasl, A. Ghasemi, F. Moftakharzadeh, Montgomery identities for fractional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math., 10(4)(2009), 1-6.

G.A. Anastassiou, Fractional Differentiation Inequalities, Springer Science, LLC, 2009. DOI: https://doi.org/10.1007/978-0-387-98128-4

N.S. Barnett, P. Cerone, S.S. Dragomir, J. Roumeliotis, Some inequalities for the expectation and variance of a random variable whose PDF is n-time differentiable, J. Inequal. Pure Appl. Math., 1(21)(2000), 1-29.

N.S. Barnett, P. Cerone, S.S. Dragomir and J. Roumeliotis, Some inequalities for the dispersion of a random variable whose PDF is defined on a finite interval, J. Inequal. Pure Appl. Math., 2(1)(2001), 1-18.

S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10(3)(2009), 1-12.

P.L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2(1882), 93-98.

Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear Sciences, 9(4)(2010), 493-497.

Z. Dahmani, L. Tabharit, On weighted Gruss type inequalities via fractional integrals, JARPM, Journal of Advanced Research in Pure Mathematics, 2(4)(2010), 31-38. DOI: https://doi.org/10.5373/jarpm.392.032110

Z. Dahmani, On Minkowski and Hermite-Hadamad integral inequalities via fractional integration, Ann. Funct. Anal., 1(1)(2010, 51-58. DOI: https://doi.org/10.15352/afa/1399900993

S.S. Dragomir, A generalization of Gruss’s inequality in inner product spaces and applications, J. Math. Annal. Appl., 237(1)(1999), 74-82. DOI: https://doi.org/10.1006/jmaa.1999.6452

R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien, (1997), 223-276. DOI: https://doi.org/10.1007/978-3-7091-2664-6_5

P. Kumar, Moment inequalities of a random variable defined over a finite interval, J. Inequal. Pure Appl. Math., 3(3)(2002), 1-24.

P. Kumar, Inequalities involving moments of a continuous random variable defined over a finite interval, Computers and Mathematics with Applications, 48(2004), 257-273. DOI: https://doi.org/10.1016/j.camwa.2003.02.014

Y. Miao, G. Yang, A note on the upper bounds for the dispersion, J. Inequal. Pure Appl. Math., 8(3)(2007), 1-13.

D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

T.F. Mori, Sharp inequalities between centered moments, J. Math. Annal. Appl., 10(4)(2009), 1-19.

M. Niezgoda, New bounds for moments of continuous random varialbes, Comput. Math. Appl., 60(12)(2010), 3130-3138. DOI: https://doi.org/10.1016/j.camwa.2010.10.018

B.G. Pachpatte, On multidimensional Gruss type integral inequalities, J. Inequal. Pure Appl. Math., 32 (2002), 1-15.

F. Qi, A.J. Li, W.Z. Zhao, D.W. Niu, J. Cao, Extensions of several integral inequalities, J. Inequal. Pure Appl. Math., 7(3)(2006), 1-6.

F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2)(2000), 1-9.

R. Sharma, S. Devi, G. Kapoor, S. Ram, N.S. Barnett, A brief note on some bounds connecting lower order moments for random variables defined on a finite interval, Int. J. Theo. Appl. Sci., 1(2)(2009), 83-85.

M.Z. Sarikaya, N. Aktan, H. Yildirim, On weighted Chebyshev-Gruss like inequalities on time scales, J. Math. Inequal., 2(2)(2008), 185-195. DOI: https://doi.org/10.7153/jmi-02-17

  • NA

Metrics

Metrics Loading ...

Published

01-04-2014

How to Cite

Zoubir Dahmani. “Fractional Integral Inequalities for Continuous Random Variables”. Malaya Journal of Matematik, vol. 2, no. 02, Apr. 2014, pp. 172-9, doi:10.26637/mjm202/010.