Product cordial labeling for alternate snake graphs

Downloads

DOI:

https://doi.org/10.26637/mjm203/002

Abstract

The product cordial labeling is a variant of cordial labeling. Here we investigate product cordial labelings for alternate triangular snake and alternate quadrilateral snake graphs.

Keywords:

Cordial labeling, Product cordial labeling, Snake graph

Mathematics Subject Classification:

05C78
  • S. K. Vaidya Department of Mathematics, Saurashtra University, Rajkot-360 005, Gujarat, India.
  • N B Vyas Department of Mathematics, Atmiya Institute of Technology and Science, Rajkot-360 005, Gujarat, India.
  • Pages: 188-196
  • Date Published: 01-07-2014
  • Vol. 2 No. 03 (2014): Malaya Journal of Matematik (MJM)

D. B. West, Introduction to Graph Theory, Printice-Hall of India, 2001.

I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious Graphs, Ars Combinatoria, 23(1987), 201-207.

J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 16(#DS6), 2013.

M. Sundaram, R. Ponraj and S. Somsundaram, Product cordial labeling of graphs, Bull. Pure and Applied Sciences(Mathematics and Statistics), 23E(2004), 155-163.

S.K.VaidyaandN.A.Dani, Somenewproductcordialgraphs, JournalofApp.Comp.Sci.Math., 8(4)(2010), 63-66.

S. K. Vaidya and K. K. Kanani, Some cycle related product cordial graphs, International Journal of Algorithms, 3(1)(2010), 109-116.

S. K. Vaidya and K. K. Kanani, Some new product cordial graphs, Mathematics Today, 27 (2011), 64-70.

S. K. Vaidya and N. B. Vyas, Product Cordial Labeling in the Context of Tensor Product of Graphs, Journal of Mathematics Research, 3(3)(2011), 83-88. DOI: https://doi.org/10.5539/jmr.v3n3p83

S. K. Vaidya and C. M. Barasara, Further results on product cordial labeling, International Journal of Math. Combin., 3(2012), 64-71. DOI: https://doi.org/10.5539/jmr.v3n2p206

  • NA

Metrics

Metrics Loading ...

Published

01-07-2014

How to Cite

S. K. Vaidya, and N B Vyas. “Product Cordial Labeling for Alternate Snake Graphs”. Malaya Journal of Matematik, vol. 2, no. 03, July 2014, pp. 188-96, doi:10.26637/mjm203/002.