Existence results for an impulsive neutral integro-differential equation with infinite delay via fractional operators

Downloads

DOI:

https://doi.org/10.26637/mjm203/004

Abstract

In this present work, we consider an impulsive neutral integro-differential equation with infinite delay in an arbitrary Banach space \(X\). The existence of mild solution is established by using resolvent operator and Hausdorff measure of noncompactness.

Keywords:

Resolvent operator, Impulsive differential equation, Neutral integro-differential equation, Measure of noncompactness

Mathematics Subject Classification:

34K37, 34K30, 35R11, 47N20
  • Pages: 203-214
  • Date Published: 01-07-2014
  • Vol. 2 No. 03 (2014): Malaya Journal of Matematik (MJM)

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York, (1983). DOI: https://doi.org/10.1007/978-1-4612-5561-1

B. D. Andrade and J. P. Carvalho Dos Santos, Existence of solutions for a fractional neutral integro-differential equation with unbounded delay, Elect. J. Diff. Equ., 90 (2012), 1-13.

E. Hernández and D. O’ Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2012) 1641-1649. DOI: https://doi.org/10.1090/S0002-9939-2012-11613-2

E. Hernández and H. R. Henr ´ iquez, Existence results for partial neutral functional differential equations with bounded delay, J. Math. Anal. and Appl., 221 (1998), 452-475. DOI: https://doi.org/10.1006/jmaa.1997.5875

E. Hernández, M. Pierri and G. Goncalves, Existence results for an impulsive abstract partial differential equation with state-dependent delay, Comput. Math. Appl., 52 (2006), 411-420. DOI: https://doi.org/10.1016/j.camwa.2006.03.022

E. Hernández, R. Sakthivel and S. Tanaka Aki, Existence results for impulsive evolution differential equations with state-dependent delay, Elect. J. Differ. Equ., 28 (2008), 1-11.

H. R. Henr ´ iquez and J. P. C. Dos Santos, Existence results for abstract partial neutral integro-differential equation with unbounded delay, Elect. J. Qual. The. Diff. Equ., 29 (2009), 1-23. DOI: https://doi.org/10.14232/ejqtde.2009.1.29

H. P. Heinz, On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Analysis: TMA, 7 (1983), 1351-1371. DOI: https://doi.org/10.1016/0362-546X(83)90006-8

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.

J. Banas and K. Goebel, Measure of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, USA, 1980.

J. Prüss, Evolutionary Integral Equations and Applications, in Monographs Math., Vol. 87, Birkhauser-Verlag, 1993. DOI: https://doi.org/10.1007/978-3-0348-8570-6

M. Benchohra, J. Henderson and S. K. Ntouyas, Impulsive differential equations and inclusions, Contemporary Mathematics and Its Applications, Vol.2, Hindawi Publishing Corporation, New York, 2006. DOI: https://doi.org/10.1155/9789775945501

R. P. Agarwal, M. Benchohra and D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math., 55 (2009), 221-230. DOI: https://doi.org/10.1007/s00025-009-0434-5

Runping Ye, Existence of solutions for impulsive partial neutral functional differential equations with infinite delay, Nonlinear Analysis: TMA, 73 (2010), 155-162. DOI: https://doi.org/10.1016/j.na.2010.03.008

R. Agarwal, M. Meehan and D. O’regan, Fixed point theory and applications, in: Cambridge Tracts in Mathematics, Cambridge University Press, New York, 2001, pp-178-179. DOI: https://doi.org/10.1017/CBO9780511543005

R. R. Akhmerov, M. I. Kamenski ˇ i, A. S. Potapov, A. E. Rodkina and B. N. Sadovski ˇ i, Measures of non-compactness and Condensing operators, Birkhäuser, Boston-Basel, Berlin, Germany, 1992.

T. Gunasekar, F. P. Samuel and M. M. Arjunan, Existence results for impulsive neutral functional integro-differential equation with infinite delay, J. Nonlinear Sci. Appl., 6 (2013), 234-243. DOI: https://doi.org/10.22436/jnsa.006.04.01

V. Lakshmikantham, D. Ba ˇ inov and Pavel S. Simeonov, Theory of impulsive differential equations, Series in Modern Applied Mathematics, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. DOI: https://doi.org/10.1142/0906

X. Zhang, X. Huang and Z. Liu, The Existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Noninear Analysis: Hybrid Systems, 4 (2010), 775-781. DOI: https://doi.org/10.1016/j.nahs.2010.05.007

Y.Hino, S.Murakami and T. Naito, Functional Differential Equations with Infinite Delay, in Lecture Notes in Math., vol. 1473, Springer-Verlag, Berlin, 1991. DOI: https://doi.org/10.1007/BFb0084432

Y. K. Chang and W. S. Li, Solvability for impulsive neutral integro-differential equations with State-dependent delay via Fractional Operator, J. Optimi. The. Appl., 2010 (144), 445-459. DOI: https://doi.org/10.1007/s10957-009-9612-6

Y. K. Chang and Juan J. Nieto, Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators, Nume. Funct. Anal. Optimi., 30 (2009), 227-244. DOI: https://doi.org/10.1080/01630560902841146

  • University Grants Commission (UGC), Government of India, New Delhi

Metrics

Metrics Loading ...

Published

01-07-2014

How to Cite

Alka Chadha, and Dwijendra N Pandey. “Existence Results for an Impulsive Neutral Integro-Differential Equation With Infinite Delay via Fractional Operators”. Malaya Journal of Matematik, vol. 2, no. 03, July 2014, pp. 203-14, doi:10.26637/mjm203/004.