Lattice for covering rough approximations

Downloads

DOI:

https://doi.org/10.26637/mjm203/006

Abstract

Covering is a common type of data structure and covering-based rough set theory is an efficient tool to process this type of data. Lattice is an important algebraic structure and used extensively in investigating some types of generalized rough sets. This paper presents the lattice based on covering rough approximations and lattice for covering numbers. An important result is investigated to illustrate the paper.

Keywords:

Covering, Rough Set, Lattice, Covering approximation

Mathematics Subject Classification:

03G10, 14E20, 18B35
  • Dipankar Rana Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore-721102, West Bengal, India.
  • Sankar Kumar Roy Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore-721102, West Bengal, India. https://orcid.org/0000-0003-4478-1534
  • Pages: 222-227
  • Date Published: 01-07-2014
  • Vol. 2 No. 03 (2014): Malaya Journal of Matematik (MJM)

Bargiela, A., Pedrycz, W .: Granular Computing: An Introduction, Kluwer Academic Publishers, Boston, 180, 2002. DOI: https://doi.org/10.1007/978-1-4615-1033-8

Comer, S.: An algebraic approach to the approximation of information, Fundamenta Informaticae, 14(1991), 492-502. DOI: https://doi.org/10.3233/FI-1991-14406

Lin, T.Y .: Granular computing - structures, representations, and applications, In: LNAI, 2639(2003), 16 -24. DOI: https://doi.org/10.1007/3-540-39205-X_3

Liu, G., Sai, Y .: Invertible approximation operators of generalized rough sets and fuzzy rough sets, Information Sciences, 180(2010), 2221-2229. DOI: https://doi.org/10.1016/j.ins.2010.01.033

Pawlak, Z.: Rough sets: A new approach to vagueness. In: L.A. Zadeh and J. Kacprzyk, Eds. Fuzzy Logic for the Management of Uncertainty, New York, John Wiley and Sons, 105-118, 1992.

Pawlak, Z .: Rough sets : Theoretical aspects of reasoning about data, Kluwer Academic Publishers, Boston, 1991. DOI: https://doi.org/10.1007/978-94-011-3534-4_7

Pawlak, Z., Some issues on rough sets, Transactions on Rough Set, I, Journal Subline, Lecture Notes in Computer Science, 3100(2004), 1-58. DOI: https://doi.org/10.1007/978-3-540-27794-1_1

Rana, D., Roy, S. K .: Rough Set Approach on Lattice, Journal of Uncertain Systems, 5(1)(2011), 72-80.

Wang, F.Y .: Outline of a computational theory for linguistic dynamical systems: Toward computing with words, International Journal of Intelligent Control and Systems, 2(1998), 211-224.

Yao, Y .: Algebraic approach to rough sets, Bull. Polish Acad. Sci. Math, 35(1987), 673 - 683.

Yao, Y .: A partition model of granular computing, LNCS, 3100(2004), 232 - 253. DOI: https://doi.org/10.1007/978-3-540-27794-1_11

Yao, Y .: Constructive and algebraic methods of theory of rough sets, Information Sciences, 109, 21-47, 1998. DOI: https://doi.org/10.1016/S0020-0255(98)00012-7

Yao, Y .: Granular computing: basic issues and possible solutions, In: Proceedings of the 5th Joint Conference on Information Sciences, 1(2000), 186 - 189.

Yao, Y .: Three-way decisions with probabilistic rough sets, Information Science, 180(2010), 341-353. DOI: https://doi.org/10.1016/j.ins.2009.09.021

Zadeh, L. A .: Fuzzy Logic = computing with words, IEEE Transactions on Fuzzy Systems, 4(1996), 103-111. DOI: https://doi.org/10.1109/91.493904

Zadeh, L. A .: Fuzzy Sets, Information and Control, 8(1965), 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Zhu, W.: Topological Approaches to Covering Rough Sets, Information Sciences, 177(2007), 1499-1508. DOI: https://doi.org/10.1016/j.ins.2006.06.009

Zhu, W.: Relationship among Basic Concepts in Covering-based Rough Sets, Information Sciences, 179(14)(2007), 2478-2486. DOI: https://doi.org/10.1016/j.ins.2009.02.013

Zhu, W.: Basic Concepts in Covering-Based Rough Sets, in ICNC’07, Haikou, China, 24-27 August, 2007, 5, 283-286, 2007. DOI: https://doi.org/10.1109/ICNC.2007.281

Zhu, W., Wang, F.Y.: On Three Types of Covering Rough Sets, IEEE Transactions On Knowledge and Data Engineering, 19(8)(2007), 1131-1144. DOI: https://doi.org/10.1109/TKDE.2007.1044

  • NA

Metrics

Metrics Loading ...

Published

01-07-2014

How to Cite

Dipankar Rana, and Sankar Kumar Roy. “Lattice for Covering Rough Approximations”. Malaya Journal of Matematik, vol. 2, no. 03, July 2014, pp. 222-7, doi:10.26637/mjm203/006.