The \(b\)-chromatic number of some degree splitting graphs

Downloads

DOI:

https://doi.org/10.26637/mjm203/010

Abstract

A \(b\)-coloring of a graph \(G\) is a variant of proper coloring in which each color class contains a vertex that has a neighbor in all the other color classes. We investigate some results on \(b\)-coloring in the context of degree splitting graph of \(P_n, B_{n, n}, S_n\) and \(G_n\).

Keywords:

Graph coloring, degree splitting graph, \(b\)-coloring , \(b\)-vertex

Mathematics Subject Classification:

05C15, 05C76
  • S. K. Vaidya Department of Mathematics, Saurashtra University, Rajkot - 360005, Gujarat, India.
  • Rakhimol V. Isaac Department of Mathematics, Christ College, Rajkot - 360005, Gujarat, India.
  • Pages: 249-253
  • Date Published: 01-07-2014
  • Vol. 2 No. 03 (2014): Malaya Journal of Matematik (MJM)

J. Clark and D. A. Holton, A First Look at Graph Theory, World Scientific, (1969).

R. W. Irving and D. F. Manlove, The b-chromatic number of a graph, Discrete Applied Mathematics, 91, (1999), 127-141. DOI: https://doi.org/10.1016/S0166-218X(98)00146-2

M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Mathematics, 256, (2002), 267-277. DOI: https://doi.org/10.1016/S0012-365X(01)00469-1

F. Havet, C. L. Sales and L. Sampaio, b-coloring of tight graphs, Discrete Applied Mathematics, 160, (2012), 2709-2715. DOI: https://doi.org/10.1016/j.dam.2011.10.017

M. Alkhateeb, On b-colorings and b-continuity of graphs, Ph.D Thesis, Technische Universität Bergakademie, Freiberg, Germany, (2012).

S. Chandrakumar and T. Nicholas, b-continuity in Peterson graph and power of a cycle, International Journal of Modern Engineering Research, 2, (2012), 2493-2496.

T. Faik, About the b-continuity of graphs, Electronic Notes in Discrete Math., 17, (2004), 151-156. DOI: https://doi.org/10.1016/j.endm.2004.03.030

  • NA

Metrics

Metrics Loading ...

Published

01-07-2014

How to Cite

S. K. Vaidya, and Rakhimol V. Isaac. “The \(b\)-Chromatic Number of Some Degree Splitting Graphs”. Malaya Journal of Matematik, vol. 2, no. 03, July 2014, pp. 249-53, doi:10.26637/mjm203/010.