Square-mean asymptotically almost automorphic mild solutions to non-autonomous stochastic differential equations

Downloads

DOI:

https://doi.org/10.26637/mjm203/012

Abstract

This paper is mainly concerned with square-mean asymptotically almost automorphic mild solutions to a class of non-autonomous stochastic differential equations in a real separable Hilbert space. Some existence results of square-mean asymptotically almost automorphic mild solutions have been established by properties and composition theroems of square-mean asymptotically almost automorphic functions and fixed point theorems.

Keywords:

Non-autonomous differential equation, Square-mean asymptotically almost automorphic

Mathematics Subject Classification:

34K14, 60H10, 35B15, 34F05
  • Zhi-Hong Li Department of Mathematics, Lanzhou Jiaotong University, Lanzhou - 730070, P. R. China.
  • Zhi-Han Zhao Department of Information Engineering, Sanming University, Sanming - 365004, P. R. China
  • Pages: 263-272
  • Date Published: 01-07-2014
  • Vol. 2 No. 03 (2014): Malaya Journal of Matematik (MJM)

P. Acquistapace, Evolution operators and strong solution of abstract linear parabolic equations, Differential Integral Equations, 1(1988), 433-457. DOI: https://doi.org/10.57262/die/1372451947

P. Acquistapace, B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78(1987), 47-107.

D. Bugajewski and G. M. N’Guérékata, On the topological structure of almost automorphic and asymptotically almost automorphic solutions of differential and integral equations in abstract spaces, Nonlinear Anal., 59(2004), 1333-1345. DOI: https://doi.org/10.1016/S0362-546X(04)00329-3

P. Bezandry and T. Diagana, Existence of almost periodic solutions to some stochastic differential equations, Appl. Anal., 86(2007), 819-827. DOI: https://doi.org/10.1080/00036810701397788

P. Bezandry and T. Diagana, Square-mean almost periodic solutions to nonautonomous stochastic differential equations, Electron. J. Differertial Equations, 2007, 1-10.

Y. K. Chang, Z. H. Zhao, G. M. N’Guérékata, Square-mean almost automorphic mild solutions to non-autonomous stochastic differential equations in Hilbert spaces, Comput. Math. Appl., 61(2011), 384-391. DOI: https://doi.org/10.1016/j.camwa.2010.11.014

Y. K. Chang, Z. H. Zhao, G. M. N’Gu’er’ekata, Square-mean almost automorphic mild solutions to some stochastic differential equations in Hilbert space, Advances in Difference Equations, 2011, 2011:9. DOI: https://doi.org/10.1186/1687-1847-2011-9

Y. K. Chang, Z. H. Zhao, G. M. N’Guérékata and R. Ma, Stepanov-like almost automorphic for stochastic processes and applications to stochastic differential equations, Nonlinear Anal. RWA, 12(2011), 1130-1139. DOI: https://doi.org/10.1016/j.nonrwa.2010.09.007

Y. K. Chang, Z. H. Zhao and G. M. N’Guérékata, A new composition theorem for square-mean almost automorphic functions and applications to stochastic differential equations, Nonlinear Anal., 74(2011), 2210-2219. DOI: https://doi.org/10.1016/j.na.2010.11.025

Z. Chen, W. Lin, Square-mean pseudo almost automorphic process and its application to stochastic evolution equations, J. Funct. Anal., 261(2011), 69-89. DOI: https://doi.org/10.1016/j.jfa.2011.03.005

H. S. Ding, T. J. Xiao and J. Liang, Asymptotically almost automorphic solutions for some integral-differential equations with nonlocal initial conditions, J. Math. Anal. Appl., 338(2008), 141-151. DOI: https://doi.org/10.1016/j.jmaa.2007.05.014

T. Diagana, E. Hernández and J. P. C. dos Santos, Existence of asymptotically almost automorphic solutions to some abstract partial neutral integral-differential equations, Nonlinear Anal., 71(2009), 248-257. DOI: https://doi.org/10.1016/j.na.2008.10.046

M. M. Fu and Z. X. Liu, Square-mean almost automorphic solutions for some stchastic differential equations, Proc. Amer. Math. Soc., 138(2010), 3689-3701. DOI: https://doi.org/10.1090/S0002-9939-10-10377-3

G. M. N’Guérékata, Sur les solutions presqu’automorphes d”equations diff’erentielles abstraites, Ann. Sci. Math. Qu’ebec, 5(1981), 69-79.

A. Ichikawa, Stability of semilinear stochastic evolution equations, J. Math. Anal. Appl., 90(1982), 12-14. DOI: https://doi.org/10.1016/0022-247X(82)90041-5

Z. H. Zhao, Y. K. Chang and J. J. Nieto, square-mean asymptotically almost automorphic process and its application to stochastic integro-differential equations, Dynam. Syst. Appl., 22(2013), 269-284.

Z. H. Zhao, Y. K. Chang and J. J. Nieto, Asymptotic behavior of solutions to abstract stochastic fractional partial integrodifferential equations, Abstr. Appl. Anal., Vol. 2013, Article ID 138068, 8 pages, 2013. DOI: https://doi.org/10.1155/2013/138068

Z. H. Zhao, Y. K. Chang and J. J. Nieto, Almost automorphic solutions to some stochastic functional differential equations with delay, Afr. Diaspora J. Math., 15(2013), 7-25.

  • Research Fund for Young Teachers of Sanming University (B201107/Q) and Science Foundation of the Education Department of Fujian Province (Grant No.JB12227)

Metrics

PDF views
72
Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202612
|

Published

01-07-2014

How to Cite

Zhi-Hong Li, and Zhi-Han Zhao. “Square-Mean Asymptotically Almost Automorphic Mild Solutions to Non-Autonomous Stochastic Differential Equations”. Malaya Journal of Matematik, vol. 2, no. 03, July 2014, pp. 263-72, doi:10.26637/mjm203/012.