Asymptotic behavior of solutions to a nonautonomous semilinear evolution equation

Downloads

DOI:

https://doi.org/10.26637/mjm203/014

Abstract

In this paper, we shall deal with \(\mu\)-pseudo almost automorphic solutions to the nonautonomous semilinear evolution equations: \(u^{\prime}(t)=A(t) u(t)+f(t, u(t-h)), t \in \mathbb{R}\) in a Banach space \(\mathbb{X}\), where \(A(t), t \in \mathbb{R}\) generates an exponentially stable evolution family \(\{U(t, s)\}\) and \(f: \mathbb{R} \times \mathbb{X} \rightarrow \mathbb{X}\) is a \(\mu\)-pseudo almost automorphic function satisfying some suitable conditions. We obtain our main results by properties of \(\mu\)-pseudo almost automorphic functions combined with theories of exponentially stable evolution family.

Keywords:

nonautonomous semilinear evolution equations, fixed point, \(\mu\)-pseudo almost automorphic function

Mathematics Subject Classification:

34K14, 60H10, 35B15, 34F05
  • Xiao-Xia Luo Department of Mathematics, Lanzhou Jiaotong University,Lanzhou - 730070, P. R. China.
  • Yong-Long Wang Department of Mathematics, Lanzhou Jiaotong University,Lanzhou - 730070, P. R. China.
  • Pages: 277-286
  • Date Published: 01-07-2014
  • Vol. 2 No. 03 (2014): Malaya Journal of Matematik (MJM)

P. Acquistapace, B. Terreni, A unified approach to abstract linear parabolic equations, Rend. Sem. Mat. Univ. Padova, 78(1987), 47-107.

S. Bochner, Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci., 52(1964), 907-910. DOI: https://doi.org/10.1073/pnas.52.4.907

S. Bochner, A new approach to almost periodicity, Proc. Natl. Acad. Sci., 48(1962), 2039-2043. DOI: https://doi.org/10.1073/pnas.48.12.2039

G. M. N’Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic, Plenum Publishers, New York, 2001. DOI: https://doi.org/10.1007/978-1-4757-4482-8

G. M. N’Guérékata, Topics in Almost Automorphy, Springer, New York, 2005.

H. S. Ding, J. Liang, T. J. Xiao, Almost automorphic solutions to nonautonomous semilinear evolution equations in Banach spaces, Nonlinear Anal., 73(2010), 1426-1438. DOI: https://doi.org/10.1016/j.na.2010.05.006

G. M. N’Guérékata, Sue les solutions presqu’automorphes d’ équations différentielles abstraites, Annales des Sciences Mathématqiues du Québec, 51(1981), 69-79.

T. J. Xiao, J. Liang, J. Zhang, Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces, Semigroup Forum, 76(2008), 518-524. DOI: https://doi.org/10.1007/s00233-007-9011-y

J. Liang, J. Zhang, T. J.Xiao, Composition of pseudo almost automorphic and asymptotically almost automorphic functions, J. Math. Anal. Appl. 340(2008), 1493-1499. DOI: https://doi.org/10.1016/j.jmaa.2007.09.065

G. M. N’Guérékata, A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal., 68(2008), 2658-2667. DOI: https://doi.org/10.1016/j.na.2007.02.012

J. Blot, G. M. Mophou, G. M. N’Guérékata, D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations, Nonlinear Anal., 71(2009), 903-909. DOI: https://doi.org/10.1016/j.na.2008.10.113

R. Zhang, Y. K. Chang, G. M. N’Guérékata, Weighted pseudo almost automorphic mild solutions for non-autonomous neutral functional differential equations with infinite delay (in Chinese), Sci. Sin. Math., 43(2013), 273-292. DOI: https://doi.org/10.1360/012013-9

R. Zhang, Y. K. Chang, G. M. N’Guérékata, New composition theorems of Stepanov-like weighted pseudo almost automorphic functions and applications to nonautonomous evolution equations, Nonlinear Anal. RWA., 13(2012), 2866-2879. DOI: https://doi.org/10.1016/j.nonrwa.2012.04.016

J. Blot, P. Cieutat, K. Ezzinbi, Measure theory and pseudo almost automorphic functions : New developments and applications, Nonlinear Anal., 75(2012), 2426-2447. DOI: https://doi.org/10.1016/j.na.2011.10.041

H.Lee, H.Alkahby, Stepanov-like almost automorphic solutions of nonautonomous semilinear evolution equations with delay, Nonlinear Anal., 69(2008), 2158-2166. DOI: https://doi.org/10.1016/j.na.2007.07.053

T. J. Xiao, X. X. Zhu, J. Liang, Pseudo almost automorphic mild solutions to nonautonomous differential equations and applications, Nonlinear Anal. TMA., 70(2009), 4079-4085. DOI: https://doi.org/10.1016/j.na.2008.08.018

J. Liang, G. M. N’Guérékata, T. J. Xiao, et al., Some properties of pseudo almost automrphic functions and applications to abstract differential equations, Nonlinear Anal. TMA., 70(2009), 2731-2735. DOI: https://doi.org/10.1016/j.na.2008.03.061

Y. K. Chang, X. X. Luo, Existence of µ-pseudo almost automorphic solutions to a neutral differential equation by interpolation theory, Filomat, Accepted.

H. R. Henr´ ıquez, C. Lizama, Compact almost automorphic solutions to integral equations with infinite delay, Nonlinear Anal., 71(2009), 6029-6037. DOI: https://doi.org/10.1016/j.na.2009.05.042

R. P. Agarwal, B. Andrade, C. Cuevas, Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, Nonlinear Anal. RWA., 11(2010), 3532-3554. DOI: https://doi.org/10.1016/j.nonrwa.2010.01.002

A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. DOI: https://doi.org/10.1007/978-0-387-21593-8

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, in: Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. DOI: https://doi.org/10.1007/978-1-4612-5561-1

K. J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.

H. S. Ding, J. Liang, G. M. N’Guérékata, T. J. Xiao, Pseudo-almost periodicity of some nonautonomous evolution equations with delay, Nonlinear Anal. TMA., 67(2007), 1412-1418. DOI: https://doi.org/10.1016/j.na.2006.07.026

T. Diagana, G. M. N’Guérékata, Stepanov-like almost automorphic functions and applications to some semilinear equations, Appl. Anal., 86(2007), 723-733. DOI: https://doi.org/10.1080/00036810701355018

  • NA

Metrics

Metrics Loading ...

Published

01-07-2014

How to Cite

Xiao-Xia Luo, and Yong-Long Wang. “Asymptotic Behavior of Solutions to a Nonautonomous Semilinear Evolution Equation”. Malaya Journal of Matematik, vol. 2, no. 03, July 2014, pp. 277-86, doi:10.26637/mjm203/014.