Ostrowski inequality for generalized fractional integral and related inequalities
Downloads
DOI:
https://doi.org/10.26637/mjm203/020Abstract
In this article we obtain new generalizations for ostrowski inequality by using generalized RiemannLiouville fractional integral.
Keywords:
Fractional Integral, Ostrowski İnequality, Korkine identity, Riemann-Liouville Fractional IntegralMathematics Subject Classification:
26A33, 26D10, 26D15, 41A55- Pages: 322-329
- Date Published: 01-07-2014
- Vol. 2 No. 03 (2014): Malaya Journal of Matematik (MJM)
Ostrowski, A.M., Über die Absolutabweichung einer differentiebaren Function von ihrem integralmittelwert Commentarii Mathematici Helvetici, 10(1938), 226-227. DOI: https://doi.org/10.1007/BF01214290
Korkine A.N., Sur une therome de M. Tchebychef, C.R. Acad. Sci. Paris, 96(1883), 316-327.
Hu Yue, Ostrowski Inequality for Fractional Integrals and Related Fractional Inequalities, TJMM5, (2013), 85-89.
Belarbi, S. and Dahmani, Z., On some new fractional integral inequalities, J. Ineq. Pure Appl. Math., 10(3)(2009), Art. 86.
Dahmani, Z., New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9(4)(2010), 493-497.
Dahmani, Z., Tabharit, L. and Taf, S., Some fractional integral inequalities, Nonlinear.Sci. Lett. A, $1(2)(2010), 155-160$.
Dragomir, S.S., On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl., 1(2(1998).
Dragomir, S.S., The Ostrowski integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38(1999), 33-37. DOI: https://doi.org/10.1016/S0898-1221(99)00282-5
Liu, Z., Some companions of an Ostrowski type inequality and application, J. Inequal. Pure Appl. Math., $10(2)(2009)$, Art. 52.
Pachpatte, B.G., On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., $249(2000), 583-591$ DOI: https://doi.org/10.1006/jmaa.2000.6913
Pachpatte, B.G., On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32(1)(2001), 45-49. DOI: https://doi.org/10.5556/j.tkjm.32.2001.367
Sarikaya, M.Z., On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, LXXIX(1)(2010), 129-134.
Ujevic, N., Sharp inequalities of Simpson type and Ostrowski type, Comput. Math. Appl., 48(2004), 145151. DOI: https://doi.org/10.1016/j.camwa.2003.09.026
Zhongxue, L., On sharp inequalities of Simpson type and Ostrowski type in two independent variables, Comput. Math. Appl., 56(2008), 2043-2047. DOI: https://doi.org/10.1016/j.camwa.2008.03.032
Alomari, M. and Darus, M., Some Ostrowski type inequalities for convex functions with applications, RGMIA, 13(1)(2010), article No. 3, Preprint.
Alomari, M., Darus, M., Dragomir, S.S. and Cerone, P., Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23(2010), 1071-1076. DOI: https://doi.org/10.1016/j.aml.2010.04.038
Gorenflo, R. and Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien, 1997, 223-276. DOI: https://doi.org/10.1007/978-3-7091-2664-6_5
P. L. Butzer, A. A. Kilbas and J.J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, Journal of Mathematical Analysis and Applications, 269(2002), 387-400. DOI: https://doi.org/10.1016/S0022-247X(02)00049-5
P. L. Butzer, A. A. Kilbas and J.J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, Journal of Mathematical Analysis and Applications, 269(2002), 1-27. DOI: https://doi.org/10.1016/S0022-247X(02)00001-X
P. L. Butzer, A. A. Kilbas and J.J. Trujillo, Melling transform analysis and integration by parts for Hadamard-type fractional integrals, Journal of Mathematical Analysis and Applications, 270(2002), 1-15. DOI: https://doi.org/10.1016/S0022-247X(02)00066-5
U.N. Katugampola, New Approach to a generalized fractional integral, Appl. Math. Comput., 218(3)(2011), 860-865. DOI: https://doi.org/10.1016/j.amc.2011.03.062
K. B. Oldham and J. Spanier, The Fractional Calculus, Acamedic Press, New York,1974.
S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon et alibi, 1993.
M.Z. Sarıkaya and H. Ogunmez, On new inequalities via Riemann-Liouville Fractional Integration, arXiv:1005.1167v1 [math.CA], 7 May 2010. DOI: https://doi.org/10.1155/2012/428983
V.Kiryakov, Generalized Fractional Calculus and Applications, John Wiley and Sons Inc., New York,1994.
A. A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Diferential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006
M. Z. Sarikaya, Ostrowski type inequalities involving the right Caputo fractional derivatives belong to $L_{-}{mathrm{p}}$, Facta Universitatis, Series Mathematics and Informatics, 27(2)(2012), 191-197.
M. Z. Sarikaya and H. Yaldiz, On weighted Montogomery identities for Riemann-Liouville fractional integrals, Konuralp Journal of Mathematics, 1(1)(2013), 48-53.
M. Z. Sarikaya and H. Yaldiz, New generalization fractional inequalities of Ostrowski-Grüss type, Lobacherskii Journal of Math., 34(4)(2013), 326-331. DOI: https://doi.org/10.1134/S1995080213040124
M. Z. Sarikaya and H. Filiz, Note on the Ostrowski type inequalities for fractional integrals, Vietnam Journal of Mathematics, January 2014, DOI 10.1007/s10013-014-0056-4. DOI: https://doi.org/10.1007/s10013-014-0056-4
- NA
Similar Articles
- Zlatko Pavic, Comments on Jensen’s Inequalities , Malaya Journal of Matematik: Vol. 2 No. 03 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.