Higher order binaries with time dependent coefficients and two factors - model for defaultable bond with discrete default information
Downloads
DOI:
https://doi.org/10.26637/mjm204/001Abstract
In this article, we consider a 2 factors-model for pricing defaultable bonds with discrete default intensity and barrier where the 2 factors are a stochastic risk free short rate process and firm value process. We assume that the default event occurs in an expected manner when the firm value reaches a given default barrier at predetermined discrete announcing dates or in an unexpected manner at the first jump time of a Poisson process with given default intensity given by a step function of time variable. Then our pricing model is given by a solving problem of several linear PDEs with variable coefficients and terminal value of binary type in every subinterval between the two adjacent announcing dates. Our main approach is to use higher order binaries. We first provide the pricing formulae of higher order binaries with time dependent coefficients and consider their integrals on the last expiry date variable. Then using the pricing formulae of higher binary options and their integrals, we give the pricing formulae of defaultable bonds in both cases of exogenous and endogenous default recoveries and perform credit spread analysis.
Keywords:
Higher order binary options, time dependent coefficients, defaultable bond, default intensity, default barrier, exogenous, endogenous, credit spreadMathematics Subject Classification:
35C15, 35Q91, 91G20, 91G40, 91G50, 91G80- Pages: 330-344
- Date Published: 01-10-2014
- Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
R. Agliardi, A comprehensive structural model for defaultable fixed-income bonds, Quant. Finance, $11(5)(2011), 749-762$. DOI: https://doi.org/10.1080/14697680903222451
E. Agliardi and R. Agliardi, Bond pricing under imprecise information, Oper. Res. Int. J., 11(2011), $299-309$. DOI: https://doi.org/10.1007/s12351-010-0087-x
E. Agliardi and R. Agliardi, Fuzzy defaultable bonds, Fuzzy Sets and Systems, 160(18)(2009), $2597-2607$. DOI: https://doi.org/10.1016/j.fss.2008.12.017
R. Agliardi, A comprehensive mathematical approach to exotic option pricing, Math. Methods Appl. Sci., $35(11)(2012), 1256-1268$. DOI: https://doi.org/10.1002/mma.2519
L.V. Ballestra and G. Pacelli, Pricing defaultable bonds: a new model combining structural information with the reduced-form approach, March 11, 2008, Working paper, DOI: 10.2139/ssrn.1492665 DOI: https://doi.org/10.2139/ssrn.1492665
Y. Bi and B. Bian, Pricing corporate bonds with both expected and unexpected defaults, Journal of Tongji University (Natural Science), 35(7)(2007), 989-993.
P.W. Buchen, The Pricing of dual-expiry exotics, Quant. Finance, 4(1)(2004), 101-108. DOI: https://doi.org/10.1088/1469-7688/4/1/009
L. Cathcart and L. El-Jahel, Semi-analytical pricing of defaultable bonds in a signaling jump-default model, J. Comput. Finance, 6(3)(2003), 91-108. DOI: https://doi.org/10.21314/JCF.2003.105
L. Cathcart and L. El-Jahel, Pricing defaultable bonds: a middle-way approach between structural and reduced-form models, Quant. Finance, 6(3)(2006), 243-253. DOI: https://doi.org/10.1080/14697680600670754
D. Duffie and D. Lando, Term structures of credit spreads with incomplete accounting information, Econometrica, 69(3)(2001), 633-664. DOI: https://doi.org/10.1111/1468-0262.00208
J. Ingersoll, Digital contracts: simple tools for pricing complex derivatives, Journal of Business, 73(1)(2000), $67-88$. DOI: https://doi.org/10.1086/209632
L. Jiang, Mathematical Models and Methods of Option Pricing, World Scientific, 2005. DOI: https://doi.org/10.1142/5855
H.C. O and N. Wan, Analytical pricing of defaultable bond with stochastic default intensity, Derivatives eJournal, 5(2005), DOI:10.2139/ssrn.723601, arXiv preprint, arXiv:1303.1298[q-fin.PR]. DOI: https://doi.org/10.2139/ssrn.723601
H.C. O, J.J. Jo and C.H. Kim, Pricing corporate defaultable bond using declared firm value, Electronic Journal of Mathematical Analysis and Applications, 2(1)(2014), 1-11.
H.C. O, and M.C. Kim, Higher order binary options and multiple-expiry exotics, Electronic Journal of Mathematical Analysis and Applications, 1(2)(2013), 247-259. DOI: https://doi.org/10.21608/ejmaa.2013.309807
H.C. O, and M.C. Kim, The Pricing of Multiple Expiry Exotics, arXiv preprint, pp 1-16, arXiv:1302.3319[qfin.PR].
H.C. O, X.M. Ren and N. Wan, Pricing Corporate Defaultable Bond with Fixed Discrete Declaration Time of Firm Value, Derivatives eJournal, 5(2005), DOI: 10.2139/ssrn.723562. DOI: https://doi.org/10.2139/ssrn.723562
H.C. O, D.H. Kim, S.H. Ri and J.J. Jo, Integrals of Higher Binary Options and Defaultable Bonds with Discrete Default Information, arXiv preprint, arXiv: 1305.6988v4[q-fin.PR].
M. Realdon, Credit risk pricing with both expected and unexpected default, Applied Financial Economics Letters 3(4)(2007), 225-230. DOI: https://doi.org/10.1080/17446540600993837
P. Wilmott, Derivatives: the Theory and Practice of Financial Engineering, John Wiley & Sons. Inc., 360-583, 1998.
- NA
Similar Articles
- Hüseyin YILDIRIM, Zeynep KIRTAY , Ostrowski inequality for generalized fractional integral and related inequalities , Malaya Journal of Matematik: Vol. 2 No. 03 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.