Fractional differintegral operators of the generalized Mittag-Leffler type function

Downloads

DOI:

https://doi.org/10.26637/mjm204/008

Abstract

In the present paper we study a new function called as R-function [6], which is an extension of the generalized Mittag-Leffler functions. We derive the relations that exist between the \(R\)-function and Saigo-Maeda fractional calculus operators. Some results derived by Kumar and Kumar [6], Kilbas [4], Kilbas and Saigo [5]; and Sharma and Jain [23] are special cases of the main results derived in this paper.

Keywords:

Fractional calculus, fractional differintegral operators, generalized Mittag-Leffler function, \(R\)- function

Mathematics Subject Classification:

26A33, 33C45, 33E12, 33E20
  • Dinesh Kumar Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur-342005, India. https://orcid.org/0000-0001-5415-1777
  • S.D. Purohit Department of Basic Sciences (Mathematics), College of Technology and Engineering, M.P. University of Agriculture and Technology, Udaipur-313001, India.
  • Pages: 419-425
  • Date Published: 01-10-2014
  • Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)

R.P. Agarwal, A propos d'une note de M. Pierre Humbert, C.R. Acad. Sci. Paris 236(1953), 2031-2032.

D. Baleanu, P. Agarwal and S. D. Purohit, Certain fractional integral formulas involving the product of generalized Bessel functions, The Scientific World Journal, 2014(2014), Article ID 567132, 9 pp. DOI: https://doi.org/10.1155/2013/567132

H.J. Haubold, A.M. Mathai, and R.K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., Article ID 298628, (2011), 1-51. DOI: https://doi.org/10.1155/2011/298628

A.A. Kilbas, Fractional calculus of the generalized Wright function, Fract. Calc. Appl. Anal., 8(2) (2005), 113-126.

A.A. Kilbas and M. Saigo, Fractional integrals and derivatives of Mittag-Leffler type function, Doklady Akad. Nauk Belarusi, 39(4) (1995), 22-26.

D. Kumar and S. Kumar, Fractional calculus of the generalized Mittag-Leffler type function, International Scholarly Research Notices, 2014(2014), Article ID 907432, 6 pages. DOI: https://doi.org/10.1155/2014/907432

C.F. Lorenzo, and T.T. Hartley, Generalized function for the fractional calculus, NASA/TP-1999-209424, (1999).

A.M. Mathai and R.K. Saxena,The $H$-function with Applications in Statistics and other Disciplines, John Wiley and Sons, Inc., New York, (1978).

G.M. Mittag-Leffler, Sur la nouvelle fonction $E_alpha(x)$, C.R. Acad. Sci. Paris 137 (1903), 554-558.

G.M. Mittag-Leffler, Sur la representation analytique d'une branche uniforme d'une function monogene, Acta Math. 29(1905), 101-181. DOI: https://doi.org/10.1007/BF02403200

T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the Kernel, Yokohama Math. J., 19(1971), 7-15.

S. D. Purohit, S. L. Kalla and D. L. Suthar, Fractional integral operators and the multiindex Mittag-Leffler functions, SCIENTIA Series A: Mathematical Sciences, 21 (2011), 87-96.

S.D. Purohit, D.L. Suthar and S.L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bessel function, Le Matematiche, LXVII (2012), 21-32.

E.D. Rainville, Special Functions, Chelsea Publishing Company, Bronx, New York, (1960).

M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep., College General Ed. Kyushu Univ., 11(1978), 135-143.

M. Saigo and N. Maeda, More generalization of fractional calculus Transform Methods and Special Functions, Varna, Bulgaria, (1996), 386-400.

S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon et alibi, (1993).

R.K. Saxena, J. Ram and D. Kumar, Generalized fractional differentiation for Saigo operators involving Aleph-function, J. Indian Acad. Math., 34(1) (2012), 109-115.

R.K. Saxena, J. Ram and D. Kumar, On the Two-Dimensional Saigo-Maeda fractional calculus associated with Two-Dimensional Aleph Transform, Le Matematiche, 68 (2013), 267-281.

R.K. Saxena, J. Ram and D. Kumar, Generalized Fractional Integral of the Product of Two Alephfunctions, Applications and Applied Mathematics, 8(2),(2013), 631-646.

R.K. Saxena, J. Ram and D. Kumar, Generalized Fractional Integration of the Product of two $aleph$-Functions

K. Sharma, Application of Fractional Calculus Operators to Related Areas, Gen. Math. Notes, 7 (1) (2011), 33-40.

M. Sharma and R. Jain, A note on a generalized $M$-Series as a special function of fractional calulus, Fract. Calc. Appl. Anal., 12(4) (2009), 449-452.

A.K. Shukla and J.C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., $336(2007), 797-811$. DOI: https://doi.org/10.1016/j.jmaa.2007.03.018

H.M. Srivastava and R.K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput. $118(2001), 1-52$. DOI: https://doi.org/10.1016/S0096-3003(99)00208-8

H.M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210. DOI: https://doi.org/10.1016/j.amc.2009.01.055

A. Wiman, Uber de fundamental satz in der theorie der funktionen $E_alpha(x)$, Acta Math. 29 (1905), $191-201$. DOI: https://doi.org/10.1007/BF02403202

E.M. Wright, The asymptotic expansion of generalized hypergeometric function, J. London Math. Soc., 10(1935), 286-293. DOI: https://doi.org/10.1112/jlms/s1-10.40.286

  • NA

Metrics

Metrics Loading ...

Published

01-10-2014

How to Cite

Dinesh Kumar, and S.D. Purohit. “Fractional Differintegral Operators of the Generalized Mittag-Leffler Type Function”. Malaya Journal of Matematik, vol. 2, no. 04, Oct. 2014, pp. 419-25, doi:10.26637/mjm204/008.