Fractional differintegral operators of the generalized Mittag-Leffler type function
Downloads
DOI:
https://doi.org/10.26637/mjm204/008Abstract
In the present paper we study a new function called as R-function [6], which is an extension of the generalized Mittag-Leffler functions. We derive the relations that exist between the \(R\)-function and Saigo-Maeda fractional calculus operators. Some results derived by Kumar and Kumar [6], Kilbas [4], Kilbas and Saigo [5]; and Sharma and Jain [23] are special cases of the main results derived in this paper.
Keywords:
Fractional calculus, fractional differintegral operators, generalized Mittag-Leffler function, \(R\)- functionMathematics Subject Classification:
26A33, 33C45, 33E12, 33E20- Pages: 419-425
- Date Published: 01-10-2014
- Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
R.P. Agarwal, A propos d'une note de M. Pierre Humbert, C.R. Acad. Sci. Paris 236(1953), 2031-2032.
D. Baleanu, P. Agarwal and S. D. Purohit, Certain fractional integral formulas involving the product of generalized Bessel functions, The Scientific World Journal, 2014(2014), Article ID 567132, 9 pp. DOI: https://doi.org/10.1155/2013/567132
H.J. Haubold, A.M. Mathai, and R.K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., Article ID 298628, (2011), 1-51. DOI: https://doi.org/10.1155/2011/298628
A.A. Kilbas, Fractional calculus of the generalized Wright function, Fract. Calc. Appl. Anal., 8(2) (2005), 113-126.
A.A. Kilbas and M. Saigo, Fractional integrals and derivatives of Mittag-Leffler type function, Doklady Akad. Nauk Belarusi, 39(4) (1995), 22-26.
D. Kumar and S. Kumar, Fractional calculus of the generalized Mittag-Leffler type function, International Scholarly Research Notices, 2014(2014), Article ID 907432, 6 pages. DOI: https://doi.org/10.1155/2014/907432
C.F. Lorenzo, and T.T. Hartley, Generalized function for the fractional calculus, NASA/TP-1999-209424, (1999).
A.M. Mathai and R.K. Saxena,The $H$-function with Applications in Statistics and other Disciplines, John Wiley and Sons, Inc., New York, (1978).
G.M. Mittag-Leffler, Sur la nouvelle fonction $E_alpha(x)$, C.R. Acad. Sci. Paris 137 (1903), 554-558.
G.M. Mittag-Leffler, Sur la representation analytique d'une branche uniforme d'une function monogene, Acta Math. 29(1905), 101-181. DOI: https://doi.org/10.1007/BF02403200
T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the Kernel, Yokohama Math. J., 19(1971), 7-15.
S. D. Purohit, S. L. Kalla and D. L. Suthar, Fractional integral operators and the multiindex Mittag-Leffler functions, SCIENTIA Series A: Mathematical Sciences, 21 (2011), 87-96.
S.D. Purohit, D.L. Suthar and S.L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bessel function, Le Matematiche, LXVII (2012), 21-32.
E.D. Rainville, Special Functions, Chelsea Publishing Company, Bronx, New York, (1960).
M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep., College General Ed. Kyushu Univ., 11(1978), 135-143.
M. Saigo and N. Maeda, More generalization of fractional calculus Transform Methods and Special Functions, Varna, Bulgaria, (1996), 386-400.
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon et alibi, (1993).
R.K. Saxena, J. Ram and D. Kumar, Generalized fractional differentiation for Saigo operators involving Aleph-function, J. Indian Acad. Math., 34(1) (2012), 109-115.
R.K. Saxena, J. Ram and D. Kumar, On the Two-Dimensional Saigo-Maeda fractional calculus associated with Two-Dimensional Aleph Transform, Le Matematiche, 68 (2013), 267-281.
R.K. Saxena, J. Ram and D. Kumar, Generalized Fractional Integral of the Product of Two Alephfunctions, Applications and Applied Mathematics, 8(2),(2013), 631-646.
R.K. Saxena, J. Ram and D. Kumar, Generalized Fractional Integration of the Product of two $aleph$-Functions
K. Sharma, Application of Fractional Calculus Operators to Related Areas, Gen. Math. Notes, 7 (1) (2011), 33-40.
M. Sharma and R. Jain, A note on a generalized $M$-Series as a special function of fractional calulus, Fract. Calc. Appl. Anal., 12(4) (2009), 449-452.
A.K. Shukla and J.C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., $336(2007), 797-811$. DOI: https://doi.org/10.1016/j.jmaa.2007.03.018
H.M. Srivastava and R.K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput. $118(2001), 1-52$. DOI: https://doi.org/10.1016/S0096-3003(99)00208-8
H.M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210. DOI: https://doi.org/10.1016/j.amc.2009.01.055
A. Wiman, Uber de fundamental satz in der theorie der funktionen $E_alpha(x)$, Acta Math. 29 (1905), $191-201$. DOI: https://doi.org/10.1007/BF02403202
E.M. Wright, The asymptotic expansion of generalized hypergeometric function, J. London Math. Soc., 10(1935), 286-293. DOI: https://doi.org/10.1112/jlms/s1-10.40.286
- NA
Similar Articles
- Abderrahim Mahiddine, Amina Angelika Bouchentouf , A. Rabhi , Nonparametric estimation of some characteristics of the conditional distribution in single functional index model , Malaya Journal of Matematik: Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.