Mild solution for fractional functional integro-differential equation with not instantaneous impulse

Downloads

DOI:

https://doi.org/10.26637/mjm204/010

Abstract

In this investigation, we prove the existence uniqueness and continuous dependence results of mild solution for nonlocal fractional differential equations with state dependent delay subject to not instantaneous impulse. We illustrate the existence result by an example involving partial derivatives.

Keywords:

Fractional order differential equation, Functional differential equations, Impulsive conditions, Fixed point theorem

Mathematics Subject Classification:

26A33, 34K05, 34A12, 34A37
  • Pages: 428-437
  • Date Published: 01-10-2014
  • Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)

S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives theory and applications, Gordon and Breach, Yverdon, 1993.

K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, John Wiley, New York, 1993.

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, NorthHolland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006.

V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.

I. Podlubny, Fractional differential equations, Acadmic Press, New York, 1999.

D. Araya, C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69(2008), 3692-3705. DOI: https://doi.org/10.1016/j.na.2007.10.004

G.M. Mophou, G.M. N'Gurkata, Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79(2009), 315-322. DOI: https://doi.org/10.1007/s00233-008-9117-x

J. Wang, W. Wei, Y. Yang, On some impulsive fractional differential equations in Banach spaces, Opuscula Mathematica, 30(4)(2010). DOI: https://doi.org/10.7494/OpMath.2010.30.4.507

E.Hernandez, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141(5)(2013), 1641-1649. DOI: https://doi.org/10.1090/S0002-9939-2012-11613-2

M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comp., 219(2013), 6743-6749. DOI: https://doi.org/10.1016/j.amc.2012.12.084

P. Kumara, D. N. Pandey, D. Bahuguna, On a new class of abstract impulsive functional differential equations of fractional order, J. Nonlinear Sci. Appl., 7(2014), 102-114. DOI: https://doi.org/10.22436/jnsa.007.02.04

J. Wang, X. Li, Periodic BVP for integer/fractional order nonlinear differential equations with noninstantaneous impulses, J. Appl. Math. Comput., 2014 DOI 10.1007/s12190-013-0751-4. DOI: https://doi.org/10.1007/s12190-013-0751-4

R. P. Agarwal, B. D. Andrade, On fractional integro-differential equations with state-dependent delay, Comp. Math. App., 62(2011), 1143-1149. DOI: https://doi.org/10.1016/j.camwa.2011.02.033

M. Benchohra, F. Berhoun, Impulsive fractional differential equations with state dependent delay, Commun. Appl. Anal., 14(2)(2010), 213-224.

J. Dabas, A. Chauhan, M. Kumar, Existence of mild solution for impulsive fractional equation with infinity delay, Int. J. Diff. Equ., Art ID 793023, (2011). DOI: https://doi.org/10.1155/2011/793023

M. Haase, The functional calculus for sectorial operators, Oper. theory Adv. and Appl., vol. 169 BirkhauserVerlag Basel , 2006. DOI: https://doi.org/10.1007/3-7643-7698-8

S. Abbas, M. Benchohra, Impulsive partial hyperbolic functional differential equations of fractional order with state-dependent delay, An Int. J. Theory Appl., (2010). DOI: https://doi.org/10.1515/dema-2013-0280

J. P. Carvalho dos Santos, M. Mallika Arjunan, Existence results for fractional neutral integro-differential equations with state-dependent delay, Comp. Math. Appl., 62(2011), 1275-1283. DOI: https://doi.org/10.1016/j.camwa.2011.03.048

A. Chauhan, J. Dabas, Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition, Commun. Nonlinear Sci. Num. Sim., 19 (2014), 821829. DOI: https://doi.org/10.1016/j.cnsns.2013.07.025

A. Chauhan, J. Dabas, Existence of mild solutions for impulsive fractional order semilinear evolution equations with nonlocal conditions, Electron. J. Diff. Equ., Vol. 2011 (2011),, No. 107 pp. 1-10.

J. Dabas, A. Chauhan, Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equations with infinity delay, Math. Comp. Modell., 57(2013), 754-763. DOI: https://doi.org/10.1016/j.mcm.2012.09.001

J. Dabas, G.R. Gautam, Impulsive neutral fractional integro-differential equation with state dependent delay and integral boundary condition, Elect. J. Diff. Equ., Vol. 2013 (2013), No. 273, pp. 1-13.

A. Chauhan, J. Dabas, M. Kumar, Integral boundary-value problem for impulsive fractional functional integro-differential equation with infinite delay, Electron J. Diff. Equ., 2012(2012) No.229, pp. 1-13.

N. K. Tomar, J. Dabas, Controllability of impulsive fractional order semilinear evolution equations with nonlocal conditions, J. Nonlinear Evolution Equ. Appl., 5(2012)(2012), 57-67.

X. Fu, R. Huang, Existence of solutions for neutral integro-differential equations with state-dependent delay, App. Math. Comp., 224(2013), 743-759. DOI: https://doi.org/10.1016/j.amc.2013.09.010

Y. Chang, Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos, Solitons and Fractals, 33(2007), 1601-1609. DOI: https://doi.org/10.1016/j.chaos.2006.03.006

Y. Hino, S. Murakami, T. Naito, Functional differential equations with infinite delay, Lecture Notes in Mathematics, vol. 1473, Springer, Berlin, 1991. DOI: https://doi.org/10.1007/BFb0084432

L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40(1991), 11-19. DOI: https://doi.org/10.1080/00036819008839989

G. R. Gautam, J. Dabas, Existence result of fractional functional integro-differential equation with not instantaneous impulse, Int. J. Adv. Appl. Math. Mech., 1(3)(2014), 11-21. DOI: https://doi.org/10.7153/fdc-05-06

  • The research of J. Dabas has been partially supported by Department of Science & Technology, project No.SR/FTP/MS-030/2011)

Metrics

Metrics Loading ...

Published

01-10-2014

How to Cite

Ganga Ram Gautam, and Jaydev Dabas. “Mild Solution for Fractional Functional Integro-Differential Equation With Not Instantaneous Impulse”. Malaya Journal of Matematik, vol. 2, no. 04, Oct. 2014, pp. 428-37, doi:10.26637/mjm204/010.