Third Hankel determinant for a subclass of analytic univalent functions

Downloads

DOI:

https://doi.org/10.26637/mjm204/011

Abstract

This paper focuses on attaining the upper bounds on H3(1)H3(1) for a class Cβα(0β<1,α0)Cβα(0β<1,α0) in the unit diskΔ={zC:|z|<1}.

Keywords:

Analytic functions

Mathematics Subject Classification:

30C45, 30C50
  • Pages: 438-444
  • Date Published: 01-10-2014
  • Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)

K.O. Babalola, On H 3 (1) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, S.S. Dragomir and J.Y. Cho, Editors, Nova Science Publishers, 6(2010), 1–7.

K.O. Babalola and T.O. Opoola, On the coefficients of certain analytic and univalent functions, Advances in Inequalities for Series, (Edited by S.S. Dragomir and A. Sofo), Nova Science Publishers, (2006), 5–17.

P.L. Duren, Univalent Functions, Springer Verlag, New York Inc, 1983.

R.M. Goel and B.S. Mehrok, A class of univalent functions, J. Austral. Math. Soc., (Series A), 35(1983), 1-17. DOI: https://doi.org/10.1017/S1446788700024733

T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. Journal of Math. Analysis, $4(52)(2010), 2473-2585$.

A. Janteng, S.A. Halim and M. Darus, Estimate on the second Hankel functional for functions whose derivative has a positive real part, Journal of Quality Measurement and Analysis, 4(1)(2008), 189-195.

N. Kharudin, A. Akbarally, D. Mohamad and S.C. Soh, The second Hankel determinant for the class of close to convex functions, European Journal of Scientific Research, 66(3)(2011), 421-427.

R.J. Libera and E.J. Zlotkiewiez, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2)(1982), 225-230. DOI: https://doi.org/10.1090/S0002-9939-1982-0652447-5

R.J. Libera and E.J. Zlotkiewiez, Coefficient bounds for the inverse of a function with derivative in $P$, Proc. Amer. Math. Soc., 87(2)(1983), 251-257. DOI: https://doi.org/10.1090/S0002-9939-1983-0681830-8

T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104(1962), $532-537$. DOI: https://doi.org/10.1090/S0002-9947-1962-0140674-7

K.I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., 28(c)(1983), 731-739.

M.S. Robertson, On the theory of univalent functions, Annals of Math., 37(1936), 374-408. DOI: https://doi.org/10.2307/1968451

C. Selvaraj and N. Vasanthi, Coefficient bounds for certain subclasses of close-to-convex functions, Int. Journal of Math. Analysis, 4(37)(2010), 1807-1814.

G. Shanmugam, B. Adolf Stephen and K.G. Subramanian, Second Hankel determinant for certain classes of analytic functions, Bonfring International Journal of Data Mining, 2(2) (2012), 57–60. DOI: https://doi.org/10.9756/BIJDM.1368

  • NA

Metrics

PDF views
113
Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202611
|

Published

01-10-2014

How to Cite

T.V. Sudharsan, S.P. Vijayalakshmi, and B. Adolf Stephen. “Third Hankel Determinant for a Subclass of Analytic Univalent Functions”. Malaya Journal of Matematik, vol. 2, no. 04, Oct. 2014, pp. 438-44, doi:10.26637/mjm204/011.