Some new Ostrowski type inequalities for functions whose second derivative are h-convexe via Riemann-Liouville fractionnal
Downloads
DOI:
https://doi.org/10.26637/mjm204/012Abstract
A new identity similar to an identity proved in Erhan Set. (2012) [16] for fractional integrals is established. By making use of the established identity, some new Ostrowski type inequalities for Riemann–Liouville fractional integral are obtained.
Keywords:
Ostrowski type inequalities, Riemann-Liouville integrals, \((s,m)\)−convex functionMathematics Subject Classification:
26D15, 26D20, 39A12- Pages: 445-459
- Date Published: 01-10-2014
- Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
Anastassiou GA,Hooshmandasl M.R., Ghasemi A, Moftakharzadeh F, Montogomery identities for fractional integrals and related fractional inequalities, J. Ineq. Pure Appl. Math., 10(4)(2009), Art. 97.
Alomari M, Darus M, Dragomir SS, Cerone P, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Applied Mathematics Letters, 23(2010), 1071-1076. DOI: https://doi.org/10.1016/j.aml.2010.04.038
Alomari M, Darus M. Some Ostrowski type inequalities for quasi-convex functions with applications to special means. RGMIA, 2010, 13(2) Article No 3.
Barnett NS, Cerone B, Dragomir SS, Pinheiro MR, Sofo A, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, RGMIA Res. Rep. Coll., 5(2)(2002), Article No 1. DOI: https://doi.org/10.1007/978-94-017-2519-4_5
Cerone, P., Dragomir, S. S., & Roumeliotis, J, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, RGMIA Res. Rep. Coll.,1(1)(1998), 35-42.
Dahmani Z, Tabharit L,Taf S., New generalizations of Grüss inequality usin Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3)(2010), 93-99.
Dragomir S. S, Pĕcarić J. and Persson L. E, Some inequalities of Hadamard type, Soochow J. Math., 21(3)(1995), 335-341.
Hudzik H and Maligranda L, Some remarks on s-convex functions, Aequationes Math., 48(1)(1994), 100111. DOI: https://doi.org/10.1007/BF01837981
Liu, Z, Some companions of an Ostrowski type inequality and applications, J. Inequal. Pure Appl. Math.,vol. 10, iss. 2, art. 52, 2009.
Yue, H. (2013). Ostrowski inequality for fractional integrals and related fractional inequalities.TJMM, $5(1), 85-89$.
Tunç, M. (2013). Ostrowski-type inequalities via h-convex functions with applications to special means. Journal of Inequalities and Applications, 2013(1), 1-10. DOI: https://doi.org/10.1186/1029-242X-2013-326
V. G. Miheşan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, ClujNapoca, 1993.
Mitrinović D.S, Pĕcarić JE, Fink A.M, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993. DOI: https://doi.org/10.1007/978-94-017-1043-5
Pachpatte, B. G, New inequalities of Ostrowski type for twice differentiable mappings, Tamkang Journal of Mathematics, 35(3)(2004), 219-226. DOI: https://doi.org/10.5556/j.tkjm.35.2004.202
Pinheiro, M. R, Exploring the concept of s-convexity, Aequationes mathematicae, 74(3)(2007), 201-209. DOI: https://doi.org/10.1007/s00010-007-2891-9
Set E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63(2012), 1147-1154. DOI: https://doi.org/10.1016/j.camwa.2011.12.023
G. Toader, Some generalizations of the convexity, Univ. Cluj-Napoca, Cluj-Napoc, 1985, 329-338.
Varošanec S., On h-convexity, J. Math. Anal. Appl., 326(1)(2007), 303-311. DOI: https://doi.org/10.1016/j.jmaa.2006.02.086
- This work has been supported by CNEPRU–MESRS–B01120120103 project grants.
Similar Articles
- Ganga Ram Gautam, Jaydev Dabas, Mild solution for fractional functional integro-differential equation with not instantaneous impulse , Malaya Journal of Matematik: Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.