Some new Ostrowski type inequalities for functions whose second derivative are h-convexe via Riemann-Liouville fractionnal

Downloads

DOI:

https://doi.org/10.26637/mjm204/012

Abstract

A new identity similar to an identity proved in Erhan Set. (2012) [16] for fractional integrals is established. By making use of the established identity, some new Ostrowski type inequalities for Riemann–Liouville fractional integral are obtained.

Keywords:

Ostrowski type inequalities, Riemann-Liouville integrals, \((s,m)\)−convex function

Mathematics Subject Classification:

26D15, 26D20, 39A12
  • Pages: 445-459
  • Date Published: 01-10-2014
  • Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)

Anastassiou GA,Hooshmandasl M.R., Ghasemi A, Moftakharzadeh F, Montogomery identities for fractional integrals and related fractional inequalities, J. Ineq. Pure Appl. Math., 10(4)(2009), Art. 97.

Alomari M, Darus M, Dragomir SS, Cerone P, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Applied Mathematics Letters, 23(2010), 1071-1076. DOI: https://doi.org/10.1016/j.aml.2010.04.038

Alomari M, Darus M. Some Ostrowski type inequalities for quasi-convex functions with applications to special means. RGMIA, 2010, 13(2) Article No 3.

Barnett NS, Cerone B, Dragomir SS, Pinheiro MR, Sofo A, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, RGMIA Res. Rep. Coll., 5(2)(2002), Article No 1. DOI: https://doi.org/10.1007/978-94-017-2519-4_5

Cerone, P., Dragomir, S. S., & Roumeliotis, J, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, RGMIA Res. Rep. Coll.,1(1)(1998), 35-42.

Dahmani Z, Tabharit L,Taf S., New generalizations of Grüss inequality usin Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3)(2010), 93-99.

Dragomir S. S, Pĕcarić J. and Persson L. E, Some inequalities of Hadamard type, Soochow J. Math., 21(3)(1995), 335-341.

Hudzik H and Maligranda L, Some remarks on s-convex functions, Aequationes Math., 48(1)(1994), 100111. DOI: https://doi.org/10.1007/BF01837981

Liu, Z, Some companions of an Ostrowski type inequality and applications, J. Inequal. Pure Appl. Math.,vol. 10, iss. 2, art. 52, 2009.

Yue, H. (2013). Ostrowski inequality for fractional integrals and related fractional inequalities.TJMM, $5(1), 85-89$.

Tunç, M. (2013). Ostrowski-type inequalities via h-convex functions with applications to special means. Journal of Inequalities and Applications, 2013(1), 1-10. DOI: https://doi.org/10.1186/1029-242X-2013-326

V. G. Miheşan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, ClujNapoca, 1993.

Mitrinović D.S, Pĕcarić JE, Fink A.M, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993. DOI: https://doi.org/10.1007/978-94-017-1043-5

Pachpatte, B. G, New inequalities of Ostrowski type for twice differentiable mappings, Tamkang Journal of Mathematics, 35(3)(2004), 219-226. DOI: https://doi.org/10.5556/j.tkjm.35.2004.202

Pinheiro, M. R, Exploring the concept of s-convexity, Aequationes mathematicae, 74(3)(2007), 201-209. DOI: https://doi.org/10.1007/s00010-007-2891-9

Set E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63(2012), 1147-1154. DOI: https://doi.org/10.1016/j.camwa.2011.12.023

G. Toader, Some generalizations of the convexity, Univ. Cluj-Napoca, Cluj-Napoc, 1985, 329-338.

Varošanec S., On h-convexity, J. Math. Anal. Appl., 326(1)(2007), 303-311. DOI: https://doi.org/10.1016/j.jmaa.2006.02.086

  • This work has been supported by CNEPRU–MESRS–B01120120103 project grants.

Metrics

Metrics Loading ...

Published

01-10-2014

How to Cite

B. Meftah, and K. Boukerrioua. “Some New Ostrowski Type Inequalities for Functions Whose Second Derivative Are H-Convexe via Riemann-Liouville Fractionnal”. Malaya Journal of Matematik, vol. 2, no. 04, Oct. 2014, pp. 445-59, doi:10.26637/mjm204/012.