Oscillation theorems for second-order half-linear neutral difference equations

Downloads

DOI:

https://doi.org/10.26637/mjm204/013

Abstract

In this article, some new oscillation criteria are established for the second order neutral difference equation of the form
Δ(a(n)Δ(z(n))α)+q(n)xα(σ(n))=0,nn0
where z(n)=x(n)+p(n)x(τ(n)). Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results.

Keywords:

Half-linear, neutral, oscillation, difference equations

Mathematics Subject Classification:

39A10
  • R. Arul Department of Mathematics, Kandaswami Kandar’s College, Tamil Nadu - 638 182, India.
  • T.J. Raghupathi Department of Mathematics, Kandaswami Kandar’s College, Tamil Nadu - 638 182, India.
  • Pages: 460-471
  • Date Published: 01-10-2014
  • Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)

R. P. Agarwal, Difference Equations and Inequalities, Second Edition, Marcel Dekker, NewYork, 2000. DOI: https://doi.org/10.1201/9781420027020

R. P. Agarwal, M. Bohner and S. R. O'Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005. DOI: https://doi.org/10.1155/9789775945198

R. P. Agarwal, M. M. S. Manuel and E. Thandapani, Oscillatory and nonoscillatory behavior of second order neutral delay difference equations, Math. Comput. Model., 24 (1996), 5 -11. DOI: https://doi.org/10.1016/0895-7177(96)00076-3

D. D. Bainov and D. P. Mishev, Classification and existence of positive solutions of second order nonlinear neutral difference equations, Funk. Ekvae., 40(1997), 371-396.

Y. Bolat On the oscillation of higher order half-linear delay difference equation, Appl. Math. Inform Sci. 6(2012), 423-427.

J. Cheng, Kamanev-type oscillation criteria for delay difference equations, Acta Math. Sci., 27B(2007), 574-580. DOI: https://doi.org/10.1016/S0252-9602(07)60057-5

S. R. Grace and H. A. El-Morshedy, Oscillation criteria of comparison type for second order difference equations, J. Appl. Anal., 6(2000), 87-103. DOI: https://doi.org/10.1515/JAA.2000.87

B. S. Lalli and S. R. Grace, Oscillation theorems for second order delay and neutral difference equation, Utilitas Math., 45(1994), 197-212.

H. J. Li and C. C. Yeh Oscillation criteria for second order neutral delay difference equations, Comp.Math.Appl., 36(1998), 123-132. DOI: https://doi.org/10.1016/S0898-1221(98)80015-1

S. H. Saker, New oscillation criteria for second order nonlinear neutral delay difference equations, Appl. Math. Comput., 142(2003), 99-111. DOI: https://doi.org/10.1016/S0096-3003(02)00286-2

Y. G. Sun, S. H. Saker, Oscillation of second order nonlinear neutral delay difference equations, Appl. Math. Comput., 163(2005), 909 - 918. DOI: https://doi.org/10.1016/j.amc.2004.04.017

X. H. Tang and Y. Liu, Oscillation for nonlinear delay difference equations, Tamkang J. Math.,32(2001), 275-280. DOI: https://doi.org/10.5556/j.tkjm.32.2001.342

E.Thandapani, J. R. Greaf and P. W. Spikes, On the oscillation of solutions of second order quasilinear difference equations, Nonlin. World 3(1996), 545-565.

E. Thandapani, N. Kavitha and S. Pinelas Comparision and oscillation theorem for second order nonlinear neutral difference equations of mixed type, Dyn. Sys. Appl., 21(2012), 83-92.

E. Thandapani and P. Mohankumar, Oscillation and nonoscillation of nonlinear neutral delay difference equations, Tamkang J. Math., 38 (2007), 323-333. DOI: https://doi.org/10.5556/j.tkjm.38.2007.66

E. Thandapani and S. Selvarangam, Oscillation theorems for second order nonlinear neutral difference equations, J. Math. Comput. Sci., 2(2012), no.4, 866-879. DOI: https://doi.org/10.1186/1687-1847-2012-4

E. Thandapani, P. Sundaram and I. Gyori, Oscillaion of second order nonlinear neutral delay difference equations, Jour. Math. Phy. Sci., 31(1997), 121-132.

G. Zhang, Oscillation for nonlinear neutral difference equations, Appl. Math. E-Notes, 2(2002), 22-24.

  • NA

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.

Metrics

PDF views
64
Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20267.0
|

Published

01-10-2014

How to Cite

R. Arul, and T.J. Raghupathi. “Oscillation Theorems for Second-Order Half-Linear Neutral Difference Equations”. Malaya Journal of Matematik, vol. 2, no. 04, Oct. 2014, pp. 460-71, doi:10.26637/mjm204/013.