Oscillation theorems for second-order half-linear neutral difference equations
Downloads
DOI:
https://doi.org/10.26637/mjm204/013Abstract
In this article, some new oscillation criteria are established for the second order neutral difference equation of the form
$$
\Delta\left(a(n) \Delta(z(n))^\alpha\right)+q(n) x^\alpha(\sigma(n))=0, n \geq n_0
$$
where \(z(n)=x(n)+p(n) x(\tau(n))\). Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results.
Keywords:
Half-linear, neutral, oscillation, difference equationsMathematics Subject Classification:
39A10- Pages: 460-471
- Date Published: 01-10-2014
- Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
R. P. Agarwal, Difference Equations and Inequalities, Second Edition, Marcel Dekker, NewYork, 2000. DOI: https://doi.org/10.1201/9781420027020
R. P. Agarwal, M. Bohner and S. R. O'Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005. DOI: https://doi.org/10.1155/9789775945198
R. P. Agarwal, M. M. S. Manuel and E. Thandapani, Oscillatory and nonoscillatory behavior of second order neutral delay difference equations, Math. Comput. Model., 24 (1996), 5 -11. DOI: https://doi.org/10.1016/0895-7177(96)00076-3
D. D. Bainov and D. P. Mishev, Classification and existence of positive solutions of second order nonlinear neutral difference equations, Funk. Ekvae., 40(1997), 371-396.
Y. Bolat On the oscillation of higher order half-linear delay difference equation, Appl. Math. Inform Sci. 6(2012), 423-427.
J. Cheng, Kamanev-type oscillation criteria for delay difference equations, Acta Math. Sci., 27B(2007), 574-580. DOI: https://doi.org/10.1016/S0252-9602(07)60057-5
S. R. Grace and H. A. El-Morshedy, Oscillation criteria of comparison type for second order difference equations, J. Appl. Anal., 6(2000), 87-103. DOI: https://doi.org/10.1515/JAA.2000.87
B. S. Lalli and S. R. Grace, Oscillation theorems for second order delay and neutral difference equation, Utilitas Math., 45(1994), 197-212.
H. J. Li and C. C. Yeh Oscillation criteria for second order neutral delay difference equations, Comp.Math.Appl., 36(1998), 123-132. DOI: https://doi.org/10.1016/S0898-1221(98)80015-1
S. H. Saker, New oscillation criteria for second order nonlinear neutral delay difference equations, Appl. Math. Comput., 142(2003), 99-111. DOI: https://doi.org/10.1016/S0096-3003(02)00286-2
Y. G. Sun, S. H. Saker, Oscillation of second order nonlinear neutral delay difference equations, Appl. Math. Comput., 163(2005), 909 - 918. DOI: https://doi.org/10.1016/j.amc.2004.04.017
X. H. Tang and Y. Liu, Oscillation for nonlinear delay difference equations, Tamkang J. Math.,32(2001), 275-280. DOI: https://doi.org/10.5556/j.tkjm.32.2001.342
E.Thandapani, J. R. Greaf and P. W. Spikes, On the oscillation of solutions of second order quasilinear difference equations, Nonlin. World 3(1996), 545-565.
E. Thandapani, N. Kavitha and S. Pinelas Comparision and oscillation theorem for second order nonlinear neutral difference equations of mixed type, Dyn. Sys. Appl., 21(2012), 83-92.
E. Thandapani and P. Mohankumar, Oscillation and nonoscillation of nonlinear neutral delay difference equations, Tamkang J. Math., 38 (2007), 323-333. DOI: https://doi.org/10.5556/j.tkjm.38.2007.66
E. Thandapani and S. Selvarangam, Oscillation theorems for second order nonlinear neutral difference equations, J. Math. Comput. Sci., 2(2012), no.4, 866-879. DOI: https://doi.org/10.1186/1687-1847-2012-4
E. Thandapani, P. Sundaram and I. Gyori, Oscillaion of second order nonlinear neutral delay difference equations, Jour. Math. Phy. Sci., 31(1997), 121-132.
G. Zhang, Oscillation for nonlinear neutral difference equations, Appl. Math. E-Notes, 2(2002), 22-24.
- NA
Similar Articles
- T. G. Thange, S. S. Jadhav, On certain subclass of normalized analytic function associated with Rusal differential operator , Malaya Journal of Matematik: Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)
- Rasheed Olawale Ayinla, Ayotunde Olajide Lasode, Some coefficient properties of a certain family of regular functions associated with lemniscate of Bernoulli and Opoola differential operator , Malaya Journal of Matematik: Vol. 12 No. 02 (2024): Malaya Journal of Matematik (MJM)
- TIMOTHY OLOYEDE OPOOLA, EZEKIEL ABIODUN OYEKAN, SEYI DEBORAH OLUWASEGUN, PETER OLUWAFEMI ADEPOJU, New subfamilies of univalent functions defined by Opoola differential operator and connected with modified Sigmoid function , Malaya Journal of Matematik: Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
- Sunday Oluwafemi Olatunji, Emmanuel Jesuyon Dansu, Coefficient estimates for Bazileviˇc Ma-Minda functions in the space of sigmoid function , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.