Drazin invertibility of sum and product of closed linear operators

Downloads

DOI:

https://doi.org/10.26637/mjm204/014

Abstract

The paper present a survey of results concerning the fundamental properties of the Drazin inverse for bounded operators and an interesting study of the Drazin inverse for a closed operator in a Banach space. Some necessary and sufficient conditions for \(A\) closed linear operator to possess a Drazin inverse \(A^D\) are given, we obtain also a useful caracterization and explicit formula for the Drazin inverse \((A+B)^D\) and \((A B)^D\) if \(A\) and \(B\) are closed operators.

Keywords:

Drazin inverse, Closed linear operators, Gap metric

Mathematics Subject Classification:

47A05, 47B33
  • Bekkai MESSIRDI Département de Mathématiques, Université d’Oran (Es-sénia), B.P 1524, El Menouar, Oran. Oran 31000, Algeria.
  • Sanaa MESSIRDI Département de Mathématiques, Université de Tlemcen . Tlemcen 13000, Algeria.
  • Miloud MESSIRDI Département de Mathématiques, Université de Tlemcen . Tlemcen 13000, Algeria.
  • Pages: 472-481
  • Date Published: 01-10-2014
  • Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)

A. Azzouz, B. Messirdi and G. Djellouli : New results on the closedness of of the product and sum of closed linear operators, Bull. of Math. Anal. and Appl., 3 (2) (2011), 151-158.

A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, second ed., SpringerVerlag, New York, 2003.

D. Buckholtz, Hilbert space idempotents and involutions, Proc. Amer. Math. Soc. 128 (2000), 1415-1418. DOI: https://doi.org/10.1090/S0002-9939-99-05233-8

D. Buckholtz, Inverting the difference of Hilbert space projections, Amer. Math. Monthly 104 (1997), 6061. DOI: https://doi.org/10.2307/2974825

S. R. Caradus, Operator Theory of Generalized Inverse, Queen's Papers in Pure and Appl. Math., vol. 38, Queen's University, Kingston, Ontario 1974.

N. Castro González, E. Dopazo, M. F. Martínez-Serrano, On the Drazin inverse of the sum of two operators and its application to operator matrices, J. Math. Anal. Appl. 350 (2009), 207-215. DOI: https://doi.org/10.1016/j.jmaa.2008.09.035

N. Castro González, J. J. Koliha, Yimin Wei, Error bounds for perturbation of the Drazin inverse of closed operators with equal spectral projections, Applicable Anal., 81 (2002), 915-928. DOI: https://doi.org/10.1080/0003681021000004474a

A. Dajic, J. J. Koliha, The weighted g-Drazin inverse for operators, J. Aust. Math. Soc. 81 (2006), $405-423$. DOI: https://doi.org/10.1017/S1446788700014397

C.Y. Deng, The Drazin inverse of bounded operators with commutativity up to a factor, Appl. Math. Comput., 206 (2008), 695-703. DOI: https://doi.org/10.1016/j.amc.2008.09.027

C. Deng and Y. Wei, Characterizations and representations of the Drazin inverse involving idempotents, Linear Algerbra and its Appli., 431 (2009), 1526-1538. DOI: https://doi.org/10.1016/j.laa.2009.05.017

D.S. Djordjevic, Y.Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc., 73 (2002), 115-125. DOI: https://doi.org/10.1017/S1446788700008508

J. Groß, G. Trenkler, Nonsingularity of the difference of two oblique projectors, SIAM J.Matrix Anal. Appl., 21 (1999), 390-395. DOI: https://doi.org/10.1137/S0895479897320277

T. Kato: " Perturbation theory for linear operators" Springer, 2nd Edition 1980.

C. F. King, A note on Drazin inverses, Pacific Journa lof Math., 70 (2) (1977), 383-390. DOI: https://doi.org/10.2140/pjm.1977.70.383

J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J., 38 (1996), 367-381. DOI: https://doi.org/10.1017/S0017089500031803

J. J. Koliha, V. Rakocevic, On the norm of idempotents in C*-Algebras, Rocky Mountain J. of Math., 34 (2) $(2004), 685-697$. DOI: https://doi.org/10.1216/rmjm/1181069874

J. J. Koliha, V. Rakocevic, I. Straskraba, The difference and sum of projectors, Linear Algebra Appl., 388 (2004), 279-288. DOI: https://doi.org/10.1016/j.laa.2004.03.008

J. J. Koliha, T. D. Tran, The Drazin inverse for closed linear operators and the asymptotic convergence of $C_0$-semigroup, J. Operator Theory, 46 (2001), 323-336.

J. Ph. Labrousse : "Les opérateurs quasi-Fredholm une généralisation des opérateurs semi-Fredholm". Rendiconti Del Circolo mathematica di Palermo, T. XXIX (1980), 161-258. DOI: https://doi.org/10.1007/BF02849344

Lu Jian Ming, Du Hong Ke, Wei Xiao Mei, Drazin Invertibility of Operators AB and BA, J. of Math. Research & Exposition, 28 (4) (2008), 1017-1020.

B. Messirdi, M. H. Mortad : "On Different products of closed operators" Banach Journal of Mathematical Analysis, 2 (1) (2008), 40-47. DOI: https://doi.org/10.15352/bjma/1240336271

B. Messirdi, M.H. Mortad, A. Azzouz and G. Djellouli "A topological characterization of the product of two closed operators" Colloquim Mathematicum, 112 (2) (2008), 269-278. DOI: https://doi.org/10.4064/cm112-2-4

M. Z. Nashed, Y. Zhao, The Drazin inverse for singular evolution equations and partial differential operators, World Sci. Ser. Appl. Anal., 1 (1992), 441-456. DOI: https://doi.org/10.1142/9789812798893_0032

P. Patricio, R. E. Hartwig, Some additive results on Drazin Inverses, Applied Mathematics and Computation, 215 (2) (2009) 530-538. DOI: https://doi.org/10.1016/j.amc.2009.05.021

V. Rakocevic, On the norm of idempotent in a Hilbert space, Amer. Math. Monthly, 107 (2000), 748-750. DOI: https://doi.org/10.1080/00029890.2000.12005266

V. Rakocevic, Y.Wei, The perturbation theory for the Drazin inverse and its applications II, J. Austral. Math. Soc., 70 (2001), 189-197. DOI: https://doi.org/10.1017/S1446788700002597

C. Schmoeger, Drazin invertibility of products, http://www.mathematik.uni-karlsruhe.de/ semlv. Seminar LV, No. 26 (5) (2006) , 1-6.

A. E. Taylor, D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, New York, 1980.

I. Vidav, On idempotent operators in a Hilbert space, Publ. Inst. Math. (Beograd), 4 (18) (1964), 157-163.

H. K. Wimmer, Lipschitz continuity of oblique projections, Proc. Amer. Math. Soc., 128 (2000), 873-876. DOI: https://doi.org/10.1090/S0002-9939-99-05267-3

Xiaoji Liu, Liang $mathrm{Xu}$, Yaoming Yu, The representations of the Drazin inverse of differences of two matrices, Applied Mathematics and Computation - AMC, 216 (12) (2010), 3652-3661. DOI: https://doi.org/10.1016/j.amc.2010.05.016

  • NA

Metrics

Metrics Loading ...

Published

01-10-2014

How to Cite

Bekkai MESSIRDI, Sanaa MESSIRDI, and Miloud MESSIRDI. “Drazin Invertibility of Sum and Product of Closed Linear Operators”. Malaya Journal of Matematik, vol. 2, no. 04, Oct. 2014, pp. 472-81, doi:10.26637/mjm204/014.