\(b\)-Chromatic number of some wheel related graphs
Downloads
DOI:
https://doi.org/10.26637/mjm204/015Abstract
A proper coloring \(f\) is a \(b\)-coloring of the vertices of graph \(G\) such that in each color class there exists a vertex that has neighbours in every other color classes. The \(b\)-chromatic number \(\varphi(G)\) of a graph \(G\) is the largest integer \(k\) for which \(G\) admits a \(b\)-coloring with \(k\) colors. If \(\chi(G)\) is the chromatic number of \(G\) and \(b\)-coloring exists for every integer \(k\) satisfying the inequality \(\chi(G) \leq k \leq \varphi(G)\) then \(G\) is called \(b\)-continuous. The \(b\)-spectrum \(S_b(G)\) of a graph \(G\) is the set of \(k\) integers(colors) for which \(G\) has a \(b\)-coloring. We investigate \(b\)-chromatic number for the graphs obtained from wheel \(W_n\) by means of duplication of vertices. We also discuss \(b\)-continuity and \(b\)-spectrum for such graphs.
Keywords:
\(b\)-Coloring, \(b\)-Continuity , \(b\)-SpectrumMathematics Subject Classification:
05C15, 05C76- Pages: 482-488
- Date Published: 01-10-2014
- Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
M. Alkhateeb, On b-coloring and b-continuity of graphs, Ph.D Thesis, Technische Universitt Bergakademie, Freiberg, Germany, (2012).
R. Balakrishnan and K. Ranganathan, A textbook of Graph Theory, 2 nd edition, Springer, New York, (2012). DOI: https://doi.org/10.1007/978-1-4614-4529-6
S. Chandra Kumar, T. Nicholas, $b$-Continuity in Peterson graph and power of a cycle, International Journal of Modern Engineering Research, 2(2012), 2493-2496.
T. Faik, About the $b$-continuity of graphs, Electronics Notes in Discrete Mathematics, 17(2004), 151-156. DOI: https://doi.org/10.1016/j.endm.2004.03.030
F. Havet, C. L. Sales and L. Sampaio, b-Coloring of Tight Graphs, Discrete Applied Mathematics, 160, (2012), 2709-2715. DOI: https://doi.org/10.1016/j.dam.2011.10.017
R. W.Irving and D. F.Manlove, The b-chromatic number of a graph, Discrete Applied Mathematics, 91(1999), $127-141$. DOI: https://doi.org/10.1016/S0166-218X(98)00146-2
J. Kratochvil, Z. Tuza and M. Voight, On $b$-Chromatic Number of Graphs, Lecture Notes in Computer Science, Springer, Berlin, 2573(2002), 310-320. DOI: https://doi.org/10.1007/3-540-36379-3_27
S. K. Vaidya and M. S. Shukla, b-chromatic number of some cycle related graphs, International Journal of Mathematics and Soft Computing, 4, (2014), 113-127. DOI: https://doi.org/10.26708/IJMSC.2014.2.4.12
S. K. Vaidya and Rakhimol V. Isaac, $b$-chromatic number of some degree splitting graphs, Malaya Journal of Matematik,2(3), (2014), 249-253 . DOI: https://doi.org/10.26637/mjm203/010
- NA
Similar Articles
- R. Arul, T.J. Raghupathi, Oscillation theorems for second-order half-linear neutral difference equations , Malaya Journal of Matematik: Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
- T. Gopal, G. Ayyappan, R. Arul, Some new oscillation criteria of third-order half-linear neutral difference equations , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.