Some curvature tensors on a generalized Sasakian space form
Downloads
DOI:
https://doi.org/10.26637/mjm204/018Abstract
In the present paper, we have studied the geometry of generalized Sasakian space form with the condition satisfying \(W^*(\xi, X) W^*=0, W^*(\xi, X) S=0, W^*(\xi, X) P=0\) and \(P(\xi, X) P=0\).
Keywords:
Generalized Sasakian space form, Projective curvature tensor, \(M\)-projective curvature tensorMathematics Subject Classification:
53D10, 53D15, 53C25- Pages: 502-509
- Date Published: 01-10-2014
- Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
Alegre P., Blair D. E. and Carriazo A., Generalized Sasakian-space-forms, Israel J. Math. 14 (2004), 157-183. DOI: https://doi.org/10.1007/BF02772217
Alegre P. and Carriazo A., Structures on generalized Sasakian-space-form, Differential Geom. and its application 26 (2008), 656-666. DOI: https://doi.org/10.1016/j.difgeo.2008.04.014
Alfonso Carriazo, David. E. Blair and Pablo Alegre, Proceedings of the Ninth International Workshop on Differential Geometry, 9 (2005), 31-39.
Venkatesha and Sumangala B, On M-projective curvature tensor of a generalized Sasakian space form, Acta Math. Univ. Comenianae, LXXXII (2) (2013), 209 - 217.
Belkhelfa M., Deszcz R., Verstraelen L., Symmetric properties of Sasakian-space-forms, Soochow J.math., 31 (2005), 611-616.
Blair D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509 Springer-Verlag, Berlin, 1976. DOI: https://doi.org/10.1007/BFb0079307
Chaubey S. K. and Ojha R. H., On the M-projective curvature tensor of a Kenmotsu manifold, Differential Geomerty-Dynamical Systems, 12 (2010), 52-60.
Chaubey S. K., Some properties of LP-Sasakian manifolds equipped with M-Projective curvature tensor, Bulletin of Mathematical Analysis and Applications, 3 (4) (2011), 50-58.
De U. C. and Sarkar A., On the Projective Curvature tensor of Generalized Sasakian-space-forms, Quaestiones Mathematicae, 33 (2010), 245-252. DOI: https://doi.org/10.2989/16073606.2010.491203
Mehmet Atceken, On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor, Bulletin of Mathematical Analysis and applications, 6 (1) (2014), 1-8.
Ojha R. H., A note on the m-projective curvature tensor, Indian J. pure Applied Math., 8 (12) (1975), 15311534.
Ojha R. H., On Sasakian manifold, Kyungpook Math. J., 13 (1973), 211-215.
Pokhariyal G. P. and Mishra R. S., Curvature tensor and their relativistic significance II, Yokohama Mathematical Journal, 19 (1971), 97-103.
Prakasha D. G., On Generalized Sasakian-Space-Forms with Weyl-Conformal Curvature Tensor, Lobachevskii Journal of Mathematics, 33 (3) (2012), 223228. DOI: https://doi.org/10.1134/S1995080212030110
Prakasha D. G. and Nagaraja H. G., On quasi-Conformally flat and quasi-Conformally semisymmetric generalized Sasakian-space-forms , CUBO A Mathematical Journal, 15 (3) (2013), 59-70. DOI: https://doi.org/10.4067/S0719-06462013000300007
Yano K. and Kon M., Structures on manifolds, Series in pure mathematics, Vol.3, World Scientific Publishing Co., Singapore, 1984. DOI: https://doi.org/10.1142/0067
- NA
Similar Articles
- R. Arul , M. Mani , On the oscillation of third order quasilinear delay differential equations with Maxima , Malaya Journal of Matematik: Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.