Comparison of four different obstacle models of fluid flow with a slip-like boundary condition

Downloads

DOI:

https://doi.org/10.26637/mjm204/020

Abstract

In this paper, we investigate a time-discretized 2-dimensional Navier-Stokes equation with a slip-like boundary condition, which arises in the melting ice problem with obstacle. We study the existence and uniqueness of a approximate solution. We also study the numerical solution of melting ice problem using Continuous Galerkin method.

Keywords:

Navier-Stokes equation, obstacle modeling, slip-like boundary, Continuous Galerkin finite element method

Mathematics Subject Classification:

65L60, 34K28, 37D35
  • A. Anguraj Department of Mathematics, PSG College of Arts and Science, Tamil Nadu, India.
  • J. Palraj Research Scholar, Department of Mathematics, PSG College of Arts and Science, Tamil Nadu, India.
  • Pages: 517-526
  • Date Published: 01-10-2014
  • Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)

Nicolaides R A. Analysis and convergence of the MAC scheme II: Navier-Stokes equations. SIAM J Numerical Anal, 1992, 65(213):29-44 DOI: https://doi.org/10.1090/S0025-5718-96-00665-5

Girault V, Raviart P A. Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. New York: Springer-Verlag, 1986. DOI: https://doi.org/10.1007/978-3-642-61623-5

Temam R. Navier-Stokes Equation, Theory and Numerical Analysis. Amstedam, New York: North Holland, 1984.

Thomasset F. Implementation of Finite Element Methods for Navier-Stokes Equations. Berlin: Springer, 1981. DOI: https://doi.org/10.1007/978-3-642-87047-7

Eymard R, Herbin R.A staggered Finite volume scheme on general meshes for the Navier-Stokes Equations in two space dimensions. Int J Finite Volumes, 2005, 2(1). DOI: https://doi.org/10.1007/978-3-642-18775-9_24

R.A. Adams, Sobolev Space, Academic Press, New York, 1975.

A.O.Ammi, M.Marior, Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations, Numer. Math. 68(1994) 189-213. DOI: https://doi.org/10.1007/s002110050056

K. Hashizume, T. Koyama, M. Otani, Navier-Stokes equation with slip-like boundary condition, Electronic J Differential Equations.

Cai Z Q, Douglas J Jr, Ye X. A stable nonconforming quadrilateral finite element method for the stationary stokes and Navier-Stokes equations. Calcolo, 1999, 36(4): 215-232. DOI: https://doi.org/10.1007/s100920050031

S.R.Djeddi, Ali Masoudi, P.Ghadimi, Numerical Simulation of Flow around Diamond-Shaped Obstacles at Low to Moderate Reynolds Numbers American Journal of Applied Mathematics and Statistics, 2013, vol. 1, 11-20. DOI: https://doi.org/10.12691/ajams-1-1-3

T. Fukao and N. Kenmochi, Stefan problems with convection governed by Navier-Stokes equations, Adv. Math. Sci. Appl, 15, 29-48, (2005).

Y. Kusaka, A. Tani, Classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow, Mathematical Models and Methods in Applied Sciences, 12, 365-391, (2002). DOI: https://doi.org/10.1142/S0218202502001696

J. Hron,C.LeRoux,J.Malek, K.R. Rajagopal, Flows of Incompressible Fluids subject to Naviers slip on the boundary, Com. Math. App. Volume 56, Issue 8 2128-2143 (2008). DOI: https://doi.org/10.1016/j.camwa.2008.03.058

K. Taghavi-Tafreshi and V. K. Dhir, Analytical and experimental investigation of simultaneous meltingcondensation on a vertical wall, Trans. ASME, 104, 24-33 (1982). DOI: https://doi.org/10.1115/1.3245063

R. Temam, Navier-Stokes Equations, Theory and numerical analysis, 3rd ed., Studies in Mathematics and its Applications, 2, North Holland Amsterdam-New York-Oxford (1984).

Alfio Quarteroni, Numerical models for differential problems, Springer volume 2 (2009). DOI: https://doi.org/10.1007/978-88-470-1071-0

Li K T, Huang A X, Huang Q H, The Finite Element Methods and Applications(II). Xian: Xian Jiaotong, University Press (1987).

  • NA

Metrics

Metrics Loading ...

Published

01-10-2014

How to Cite

A. Anguraj, and J. Palraj. “Comparison of Four Different Obstacle Models of Fluid Flow With a Slip-Like Boundary Condition”. Malaya Journal of Matematik, vol. 2, no. 04, Oct. 2014, pp. 517-26, doi:10.26637/mjm204/020.