Comparison of four different obstacle models of fluid flow with a slip-like boundary condition
Downloads
DOI:
https://doi.org/10.26637/mjm204/020Abstract
In this paper, we investigate a time-discretized 2-dimensional Navier-Stokes equation with a slip-like boundary condition, which arises in the melting ice problem with obstacle. We study the existence and uniqueness of a approximate solution. We also study the numerical solution of melting ice problem using Continuous Galerkin method.
Keywords:
Navier-Stokes equation, obstacle modeling, slip-like boundary, Continuous Galerkin finite element methodMathematics Subject Classification:
65L60, 34K28, 37D35- Pages: 517-526
- Date Published: 01-10-2014
- Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
Nicolaides R A. Analysis and convergence of the MAC scheme II: Navier-Stokes equations. SIAM J Numerical Anal, 1992, 65(213):29-44 DOI: https://doi.org/10.1090/S0025-5718-96-00665-5
Girault V, Raviart P A. Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. New York: Springer-Verlag, 1986. DOI: https://doi.org/10.1007/978-3-642-61623-5
Temam R. Navier-Stokes Equation, Theory and Numerical Analysis. Amstedam, New York: North Holland, 1984.
Thomasset F. Implementation of Finite Element Methods for Navier-Stokes Equations. Berlin: Springer, 1981. DOI: https://doi.org/10.1007/978-3-642-87047-7
Eymard R, Herbin R.A staggered Finite volume scheme on general meshes for the Navier-Stokes Equations in two space dimensions. Int J Finite Volumes, 2005, 2(1). DOI: https://doi.org/10.1007/978-3-642-18775-9_24
R.A. Adams, Sobolev Space, Academic Press, New York, 1975.
A.O.Ammi, M.Marior, Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations, Numer. Math. 68(1994) 189-213. DOI: https://doi.org/10.1007/s002110050056
K. Hashizume, T. Koyama, M. Otani, Navier-Stokes equation with slip-like boundary condition, Electronic J Differential Equations.
Cai Z Q, Douglas J Jr, Ye X. A stable nonconforming quadrilateral finite element method for the stationary stokes and Navier-Stokes equations. Calcolo, 1999, 36(4): 215-232. DOI: https://doi.org/10.1007/s100920050031
S.R.Djeddi, Ali Masoudi, P.Ghadimi, Numerical Simulation of Flow around Diamond-Shaped Obstacles at Low to Moderate Reynolds Numbers American Journal of Applied Mathematics and Statistics, 2013, vol. 1, 11-20. DOI: https://doi.org/10.12691/ajams-1-1-3
T. Fukao and N. Kenmochi, Stefan problems with convection governed by Navier-Stokes equations, Adv. Math. Sci. Appl, 15, 29-48, (2005).
Y. Kusaka, A. Tani, Classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow, Mathematical Models and Methods in Applied Sciences, 12, 365-391, (2002). DOI: https://doi.org/10.1142/S0218202502001696
J. Hron,C.LeRoux,J.Malek, K.R. Rajagopal, Flows of Incompressible Fluids subject to Naviers slip on the boundary, Com. Math. App. Volume 56, Issue 8 2128-2143 (2008). DOI: https://doi.org/10.1016/j.camwa.2008.03.058
K. Taghavi-Tafreshi and V. K. Dhir, Analytical and experimental investigation of simultaneous meltingcondensation on a vertical wall, Trans. ASME, 104, 24-33 (1982). DOI: https://doi.org/10.1115/1.3245063
R. Temam, Navier-Stokes Equations, Theory and numerical analysis, 3rd ed., Studies in Mathematics and its Applications, 2, North Holland Amsterdam-New York-Oxford (1984).
Alfio Quarteroni, Numerical models for differential problems, Springer volume 2 (2009). DOI: https://doi.org/10.1007/978-88-470-1071-0
Li K T, Huang A X, Huang Q H, The Finite Element Methods and Applications(II). Xian: Xian Jiaotong, University Press (1987).
- NA
Similar Articles
- B. Sumangala, Venkatesha, Some curvature tensors on a generalized Sasakian space form , Malaya Journal of Matematik: Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.