Existence of mild solution result for fractional neutral stochastic integro-differential equations with nonlocal conditions and infinite delay
Downloads
DOI:
https://doi.org/10.26637/mjm301/001Abstract
We investigate in this paper the existence of mild solutions for the fractional differential equations of neutral type with nonlocal conditions and infinite delay in Hilbert spaces by employing fractional calculus and Krasnoselski-Schaefer fixed point theorem. Finally an example is provided to illustrate the application of the obtained results.
Keywords:
Infinite delay, Stochastic fractional differential equations, mild solution, fixed point theoremMathematics Subject Classification:
35G20- Pages: 1-13
- Date Published: 01-01-2015
- Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
Agarwal, R. P., Andrade, B., Cuevas, C, On type of periodicity and ergodicity to a class of fractional order differential equations, Advances in Difference Equations, Vol. Article ID 179750,(2010), 25 pages. DOI: https://doi.org/10.1186/1687-1847-2010-179750
Balasubramaniam, P., Ntouyas, S.K, Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space, J. Math. Anal. Appl., 324(2006), 161-76. DOI: https://doi.org/10.1016/j.jmaa.2005.12.005
Benchohra, M., Henderson, J., Ntouyas, S. K., Ouahab, A, Existence results for fractional order functional differential equations with infinite delay, Journal of Mathematical Analysis and Applications, 338(2) (2008), $1340-1350$. DOI: https://doi.org/10.1016/j.jmaa.2007.06.021
Byszewski.L and Lakshmikantham. V, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40(1991),11-19. DOI: https://doi.org/10.1080/00036819008839989
Burton.T.A and Kirk.C, A fixed point theorem of Krasnoselski-Schaefer type, Math Nachr., 189(1998), 2331. DOI: https://doi.org/10.1002/mana.19981890103
Chang, Y. K., Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos Solitons Fracals, 33(2007), 1601-1609. DOI: https://doi.org/10.1016/j.chaos.2006.03.006
Chang, Y.K, Kavitha, V and Mallika Arjunan, M, Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional order, Nonlinear Anal., 71 (2009),5551-5559. DOI: https://doi.org/10.1016/j.na.2009.04.058
Chen, L., Chai, Y., Wu, R., Sun, J., Ma, T, Cluster synchronization in fractional-order complex dynamical networks, Physics Letters A, 376(2010), 2381-2388. DOI: https://doi.org/10.1016/j.physleta.2012.05.060
Da Prato, G., Zabczyk, J, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992. DOI: https://doi.org/10.1017/CBO9780511666223
Delshad, S., Asheghan, M., Beheshti, M, Synchronization of N-coupled incommensurate fractional-order chaotic systems with ring connection, Commun Nonlinear Sci Numer Simulat., 16(2011), 3815-3824. DOI: https://doi.org/10.1016/j.cnsns.2010.12.035
EI-Borai, M. M., EI-Nadi, K. E., Mostafa, O. L., Ahmed, H. M, Volterra equations with fractional stochastic integrals, Mathematical Problems in Engineering, 5(2004), 453-468. DOI: https://doi.org/10.1155/S1024123X04312020
EI-Borai, M. M, On some stochastic fractional integro-differential equations, Advances in Dynamical Systems and Applications, $1(2006), 49-57$.
Goodrich, C. S, Existence of a positive solution to systens of differential equations of fractional order, Conputers and Mathematics with Applications, 63(2011), 1251-1268. DOI: https://doi.org/10.1016/j.camwa.2011.02.039
Gurtin, M. E., Pipkin, A. C, A general theory of heat conduction with finite wave speed, Archive for Rational Mechantics and Analysis, 31(1968), 113-126. DOI: https://doi.org/10.1007/BF00281373
Hernandez, Existence results for partial neutral functional integro-differential equations with unbounded delay, I Math And Appl., 292(2004), 194-210. DOI: https://doi.org/10.1016/j.jmaa.2003.11.052
Haleand, J.K and Verduyn, L.S.M, Introduction to functional differential equations, Applied Mathematical Sciences, Springer, NewYork, NY, USA, 1993. DOI: https://doi.org/10.1007/978-1-4612-4342-7_3
LiangJ.Huang.F.and Xiao.T, Exponential stability for abstract linear autonomous functional differential equations with infinite delay, Jnternational Journal of Mathematics and Mathematical Sciences, 21(2)(1998), 255-259. DOI: https://doi.org/10.1155/S0161171298000362
LiangJ and Xiao, T.J, Functional-differential equations with infinitedelay in Banach spaces, Infernational Journal of Mathematics and Mathematical Sciences, 14(3)(1991), 497-508. DOI: https://doi.org/10.1155/S0161171291000686
Liang, J., Xiao, T.J., Van Casteren, J, A note on semilinear abstract functional differential and integrodifferential equations with infinite delay, Applied Mathematics Letters, 17(4)(2004), 473-477. DOI: https://doi.org/10.1016/S0893-9659(04)90092-4
Li, Y., Liu, B, Existence of solution of nonlinear neutral stochastic differential inclusions with infinite delay Stochastic, Anal. Appl., 25(2007), 397-415. DOI: https://doi.org/10.1080/07362990601139610
Marle, C.M, Mensures ef Probabilités, Paris, Hermann, 1974.
Mainardi F, Paradist,P and Gorenflo, R. Probability distributions generated by fractional diffusion equations. arXiv:0704.0320 v1.
Mophou, G. M., N'Guérekata, G. M, Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semrigroup Forum, 79(2009), 315-322. DOI: https://doi.org/10.1007/s00233-008-9117-x
Parthasarathy, C., Mallika Ariunan, M, Existence results for impulsive neutral stochastic functional integro-differential systems with infinite delay, Malaya Journal of Matematik, (2012), 2641. DOI: https://doi.org/10.26637/mjm0101/005
Pazy, A, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol 44, New York, Springer, 1983. DOI: https://doi.org/10.1007/978-1-4612-5561-1
Samko, S. G., Kilbas, A. A, Marichev, O, I.: Fractional Intcgnils and Derivatives: Theory and Appliations, 1993
Sobczyk, K: Stochastic Differential Equations with Applications to Physics and Engineering, Klïwer Academic Publishers, London, 1991.
Wang, J., Zhang, Y, Network synchronization in a population of star-coupled fractional nonlinear oscillators, Physics Letters A, 374(2010), 1464-1468. DOI: https://doi.org/10.1016/j.physleta.2010.01.042
Wang, J., Zhou, Y, A class of fractional evolution equations and optimal controls, Nonlinear Analysis: Real World Applications, 12(2011), 262-272. DOI: https://doi.org/10.1016/j.nonrwa.2010.06.013
Wang, J., Zhou, Y., Milan, M. On the solvability and optimal controls of fractional integrod- ifferential evolution systems with infinite delay, Journal of Optimization Theory and Applications, 152(2012), 31-50. DOI: https://doi.org/10.1007/s10957-011-9892-5
Wu,J, Theory and applicafions of parfial functional differentiale equafions, Applied Mathematical Sciences, Springer, NewYork, NY, USA, 1996. DOI: https://doi.org/10.1007/978-1-4612-4050-1
Xiao, TJ., Liang, J, Blow-up and global existence of solutions to integral equations with infinite delay in Banach spaces, Nonlinear Analysis: Theory, Methals Appliaitions, 71(12)(2009), 1442-1447. DOI: https://doi.org/10.1016/j.na.2009.01.204
Zhang, R., Qi, D., Wang, Y., Dynamics analysis of fractional order three- dimensional Hopfield neural network, In International conference on natural computation, 2010, 3037-3039. DOI: https://doi.org/10.1109/ICNC.2010.5582371
Zhou, Y, Jiao, E, Li, J, Existence of mild solutions for fractional neutral evolution equations, Computers and Mathematics with Applications, 59(2010), 1063-1077. DOI: https://doi.org/10.1016/j.camwa.2009.06.026
- NA
Similar Articles
- İmdat İŞCAN , Erhan SET, M. Emin ÖZDEMİR, Some new general integral inequalities for \(P\)-functions , Malaya Journal of Matematik: Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.