Radial symmetry of positive solutions for nonlinear elliptic boundary value problems
Downloads
DOI:
https://doi.org/10.26637/mjm301/003Abstract
The aim of this paper is to study the symmetry properties of positive solutions of nonlinear elliptic boundary value problems of type
$$
\begin{gathered}
\Delta u+f(|x|, u, \nabla u)=0 \text { in } R^n . \\
u(x) \rightarrow 0 \text { as }|x| \rightarrow \infty
\end{gathered}
$$
We employ the moving plane method based on maximum principle on unbounded domains to obtain the result on symmetry.
Keywords:
Maximum principle, Moving plane method, Semilinear elliptic boundary value problemsMathematics Subject Classification:
35B50, 35B06, 35B09, 35J25- Pages: 23-29
- Date Published: 01-01-2015
- Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
D,B. Dhaigude, D.P. Patil, Symmetry properties of solutions of nonlinear elliptic equations, Internatioumal Journil of Advences in Management, Tedinalogy and Engineering Sciences, Vol.11, 10(11), July 2013, 24 - 28.
A. Farina, L. Montoro and B. Sciunzi, Monotonicity and one dimensional symmetry for solutions of $-Delta_p u=f(u)$ in half space, Calculas of Variation, 43(2012), 123-145. DOI: https://doi.org/10.1007/s00526-011-0405-z
B. Gidas, W.M.Ni and L. Nirenberg. Symmetry and related properties via the maximum principle, Camm. Math. Phts., 681979), $200-243$.
B. Gidas, W.M.Ni and L. Nirenberg, Symmetry of Positiec Solutions of Non-linem Elliptic Equations in Rv, Mathematical Analysis and Applications Part A, ed. by L. Nachbin, adv. Math. Suppl. Stud. 7 , Academic Press, New York, 1981,369-402.
D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Orier, Springer-Verlag, Berlin, 2001 DOI: https://doi.org/10.1007/978-3-642-61798-0
H. Hopf, Differerfial Geonetry in the Large, Lecture notes in in Mathematics, Vol 1000, Springer Verlag 1983 DOI: https://doi.org/10.1007/978-3-662-21563-0
C.Li. Monotonicity and symmetry of solutions of fully non linear elliptic equations on unbounded domains, Comp. Partial differcutial equations, $16(1991), 585-615$. DOI: https://doi.org/10.1080/03605309108820770
[B] Y Naito, A note on radial symmetry of positive solutions for semi linear equations in $R^*$, Differenthial and integral eguntions, 11(1998),835-845. DOI: https://doi.org/10.57262/die/1367329479
Y. Naito, Radial symmetry of positive solutions for semilinear elliptic equations in $R^{prime prime}$, J. Karan Math. Socicty, 37(5)(2000), 751-761.
Y. Naito, Symmetry results for semilinear elliptic equations in $R^2$, Nonlintar Antlysis, 47(2001), 3661-3670. DOI: https://doi.org/10.1016/S0362-546X(01)00486-2
M.Protter and H. Weàberger, Moximiem Pranctples di Differentiol Eguations, Prentice-Hall, Englewood Cliffs, N. J. 1967.
P. Pucci, B Sciunzi and J. Serrin, Partialand full symmetry of solutions of quasilinear elliptic equations via comparison principle, Contemporary Mathematics, Special volume dedicated to $mathrm{H}$. Brezis, 2007. DOI: https://doi.org/10.1090/conm/446/08643
J. Serrin, A symmetry problem in potential theory, Arch. Rationd Mech. Anal..] 43[1971), 304-318. DOI: https://doi.org/10.1007/BF00250468
- NA
Similar Articles
- N. Ait ouali, A. Kandouci, Existence of mild solution result for fractional neutral stochastic integro-differential equations with nonlocal conditions and infinite delay , Malaya Journal of Matematik: Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.