Radial symmetry of positive solutions for nonlinear elliptic boundary value problems

Downloads

DOI:

https://doi.org/10.26637/mjm301/003

Abstract

The aim of this paper is to study the symmetry properties of positive solutions of nonlinear elliptic boundary value problems of type
$$
\begin{gathered}
\Delta u+f(|x|, u, \nabla u)=0 \text { in } R^n . \\
u(x) \rightarrow 0 \text { as }|x| \rightarrow \infty
\end{gathered}
$$
We employ the moving plane method based on maximum principle on unbounded domains to obtain the result on symmetry.

Keywords:

Maximum principle, Moving plane method, Semilinear elliptic boundary value problems

Mathematics Subject Classification:

35B50, 35B06, 35B09, 35J25
  • D.B. Dhaigude Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (M.S.) India.
  • D.P. Patil Department of Mathematics, Art’s, Science and Commerce College, Saikheda-422009, Tal Niphad. Dist: Nasik (M.S.) India.
  • Pages: 23-29
  • Date Published: 01-01-2015
  • Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)

D,B. Dhaigude, D.P. Patil, Symmetry properties of solutions of nonlinear elliptic equations, Internatioumal Journil of Advences in Management, Tedinalogy and Engineering Sciences, Vol.11, 10(11), July 2013, 24 - 28.

A. Farina, L. Montoro and B. Sciunzi, Monotonicity and one dimensional symmetry for solutions of $-Delta_p u=f(u)$ in half space, Calculas of Variation, 43(2012), 123-145. DOI: https://doi.org/10.1007/s00526-011-0405-z

B. Gidas, W.M.Ni and L. Nirenberg. Symmetry and related properties via the maximum principle, Camm. Math. Phts., 681979), $200-243$.

B. Gidas, W.M.Ni and L. Nirenberg, Symmetry of Positiec Solutions of Non-linem Elliptic Equations in Rv, Mathematical Analysis and Applications Part A, ed. by L. Nachbin, adv. Math. Suppl. Stud. 7 , Academic Press, New York, 1981,369-402.

D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Orier, Springer-Verlag, Berlin, 2001 DOI: https://doi.org/10.1007/978-3-642-61798-0

H. Hopf, Differerfial Geonetry in the Large, Lecture notes in in Mathematics, Vol 1000, Springer Verlag 1983 DOI: https://doi.org/10.1007/978-3-662-21563-0

C.Li. Monotonicity and symmetry of solutions of fully non linear elliptic equations on unbounded domains, Comp. Partial differcutial equations, $16(1991), 585-615$. DOI: https://doi.org/10.1080/03605309108820770

[B] Y Naito, A note on radial symmetry of positive solutions for semi linear equations in $R^*$, Differenthial and integral eguntions, 11(1998),835-845. DOI: https://doi.org/10.57262/die/1367329479

Y. Naito, Radial symmetry of positive solutions for semilinear elliptic equations in $R^{prime prime}$, J. Karan Math. Socicty, 37(5)(2000), 751-761.

Y. Naito, Symmetry results for semilinear elliptic equations in $R^2$, Nonlintar Antlysis, 47(2001), 3661-3670. DOI: https://doi.org/10.1016/S0362-546X(01)00486-2

M.Protter and H. Weàberger, Moximiem Pranctples di Differentiol Eguations, Prentice-Hall, Englewood Cliffs, N. J. 1967.

P. Pucci, B Sciunzi and J. Serrin, Partialand full symmetry of solutions of quasilinear elliptic equations via comparison principle, Contemporary Mathematics, Special volume dedicated to $mathrm{H}$. Brezis, 2007. DOI: https://doi.org/10.1090/conm/446/08643

J. Serrin, A symmetry problem in potential theory, Arch. Rationd Mech. Anal..] 43[1971), 304-318. DOI: https://doi.org/10.1007/BF00250468

  • NA

Metrics

Metrics Loading ...

Published

01-01-2015

How to Cite

D.B. Dhaigude, and D.P. Patil. “Radial Symmetry of Positive Solutions for Nonlinear Elliptic Boundary Value Problems”. Malaya Journal of Matematik, vol. 3, no. 01, Jan. 2015, pp. 23-29, doi:10.26637/mjm301/003.