Some Results for a Four-Point Boundary Value Problems for a Coupled System Involving Caputo Derivatives

Downloads

DOI:

https://doi.org/10.26637/mjm301/004

Abstract

Motivated by the problem (1.1) in [5], in this paper, we prove the existence and uniqueness of solutions for the following system of fractional differential equations with four point boundary conditions:
$$
\left\{\begin{array}{l}
D^\alpha x(t)+f\left(t, y(t), D^\delta y(t)\right)=0, t \in J \\
D^\beta y(t)+g\left(t, x(t), D^\sigma x(t)\right)=0, t \in J \\
x(0)=y(0)=0, x(1)-\lambda_1 x(\eta)=0, y(1)-\lambda_1 y(\eta)=0 \\
x^{\prime \prime}(0)=y^{\prime \prime}(0)=0, x^{\prime \prime}(1)-\lambda_2 x^{\prime \prime}(\xi)=0, y^{\prime \prime}(1)-\lambda_2 y^{\prime \prime}(\xi)=0
\end{array}\right.
$$
where \(3<\alpha, \beta \leq 4, \alpha-2<\sigma \leq \alpha-1, \beta-2<\delta \leq \beta-1,0<\xi, \eta<1\), and \(D^\alpha, D^\beta\), \(D^\delta\) and \(D^\sigma\), are the Caputo fractional derivatives, \(J=[0,1], \lambda_1, \lambda_2\) are real constants with \(\lambda_1 \eta \neq 1, \lambda_2 \xi \neq 1\) and \(f, g\) continuous functions on \([0,1] \times \mathbb{R}^2\).

Keywords:

Caputo derivative, Boundary Value Problem, fixed point theorem

Mathematics Subject Classification:

26A33, 34B25, 34B15
  • M. Houas Faculty of Sciences and Technology Khemis Miliana University, Ain Defla, Algeria.
  • M. Benbachir Faculty of Sciences and Technology Khemis Miliana University, Ain Defla, Algeria.
  • Z. Dahmani LPAM, Faculty SEI, UMAB Mostaganem, Algeria.
  • Pages: 30-44
  • Date Published: 01-01-2015
  • Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)

B. Ahmad, N. Juan, J. A. Aalsaedi: Exisfence and uniquetiess of solvions for noulbiear frictional differential mpuations with non-scparated type integral boundary conditions. Acta Mathematica Scientia. 31 B(6), Pp. 2122. $2130,2011$. DOI: https://doi.org/10.1016/S0252-9602(11)60388-3

B. Ahmad, J. Nieto: Existence resalts for a coupled system of nonlinewr froctiond differentiol equations with tirec-point boundary conditions: Computers & Mathematics with Applications. 58(9), pp. 1838-1843, 2009. DOI: https://doi.org/10.1016/j.camwa.2009.07.091

C. Bai, J.-X. Fang: The existence of a positize solution for a singular coupled system of nonlinour fractional differential equations. Applied Mathematics and Computation. 150(3), PP. 611-621, 2004. DOI: https://doi.org/10.1016/S0096-3003(03)00294-7

Z. Cui, P. Yu and Z. Mace Existence of solutions for nonlocal boundary velue problems of novlineir fractional differential equations. Adnances in Dymamical Systews and Applications. 7(1), pp. 31-40, 2012.

Z. Dahmani, L. Tabharit: Fractional arder differentiol equations inzolving Capufo derioutrie. Theory and Applicafions of Mathematics Computer Science. 4(1), Pp. 40-55, 2014. DOI: https://doi.org/10.12816/0006186

D. Delbosco, L. Rodino: Existence and unigueness for a novionear froctional diffencufial efuations. J- Math. Anal. Appl. 204 (3-4), pp. 429-440, 1996.

K. Diethelm, N.J. Ford: Analysis of fractiona differential equathons. ]. Math. Anal. Appl. 265(2), Pp. 229-248, 2002. DOI: https://doi.org/10.1006/jmaa.2000.7194

K. Diethelm, G. Walz Nawerical solation of fraction onder differential equations by extrapolation. Namer. Algorititms. $16(3), mathrm{PP} .231-253,1998$. DOI: https://doi.org/10.1023/A:1019147432240

A.M.A. El-Sayed: Nuilinear functional differential equations of arbitriry onders. Natlinear Andi. 33(2), PP. $181-186,1998$ DOI: https://doi.org/10.1016/S0362-546X(97)00525-7

W. Feng, S. Sun, Z. Han, y. Zhao: Exisfence of solutions for a singular system of nunlinear frochanat differential equations, Comput. Math. Appl. 62, Pp. 1370-1378, 2011. DOI: https://doi.org/10.1016/j.camwa.2011.03.076

V. Gafiychuk, B. Datsko, and V. Meleshko. Mathenationl nodeling of time fractional moction-diffusian systems. Journal of Computational and Applied Mathematics. 220(1-2), pp. 215-225, 2008. DOI: https://doi.org/10.1016/j.cam.2007.08.011

M. Houas, Z Dahmani: New fractional results for a boundary value problem with caputo derivative. Paper Accepted in IJOPCM Journal of Open Problems, 2013. DOI: https://doi.org/10.12816/0006167

A.A. Kilbas, S.A. Marzan: Nonlinear differential equation with the Coputo fraction derizatioe in the space af contimavusfy differertiable fionctions. Differ. Eque 41(1), PP. 84-89, 2005. DOI: https://doi.org/10.1007/s10625-005-0137-y

V, Lakshmikantham, A.S. Vatsala: Basic theory of fractional diffenutial equations. NonIinear Anal, 69(8), PP. $2677-2682,2008$ DOI: https://doi.org/10.1016/j.na.2007.08.042

F. Mainardi, Fmctional colculus: soun busic pmolcm in contiunaon and statistical wechorics. Fractals and fractional calculus in continaаш mechanics, Springer, Vіеняа. 1997. DOI: https://doi.org/10.1007/978-3-7091-2664-6_7

D.X. Ma, X.Z. Yang: Upper and lower solution method for fouctir-onder four-point boundity velue probiems. Journal of Computational and Applied Mathematics 223, pp. 543-551, 2009. inclusians wuith fractional integnd foundery conditions. Fournal of Fnactional Calculus and Appliontians, 3(9), PP. $1-14,2012$. DOI: https://doi.org/10.1016/j.cam.2007.10.051

I. Podlubny, 1. Petras, B.M. Vinagre, P. O leary, L. Dorcak: Analogue renlizations of frictiontil-onier coutrollers. Fractional order calculas and its applications, Nonlinear Dynam. 2944), pp. 281-296, 2002. DOI: https://doi.org/10.1023/A:1016556604320

M.U. Rehman, R.A Khan and N.A Asit :Three point boundiry talue problems for nonlinetr fractional differential ejuations. Acta Mathematica Scientia. 31B(4), pp.1337-1346, 2011. DOI: https://doi.org/10.1016/S0252-9602(11)60320-2

M. Rehuman, R. Khan: A Note on boundury zulue problems for a colcpled systen of fractional differentad equathons. Comput. Math. Appi, 61, pp. 2630-2637, 2011. DOI: https://doi.org/10.1016/j.camwa.2011.03.009

X. Su: Boundary zvlue problew for a coupled syctew of nonlinen fractional differential oruations. Applied Mathematics Letters. 22(1), Pp. 64-69, 2009 . DOI: https://doi.org/10.1016/j.aml.2008.03.001

G. Wang, R. P. Agarwal, and A. Cabada: Existence results and monotone iteretine technigue for systems of monlinae frictional differential equations. Applied Mathematics Letters. 25, pp. 1019-1024, 2012. DOI: https://doi.org/10.1016/j.aml.2011.09.078

J. Wang, H. Xiang, and Z. Liu: Pasitize solution to monzem boundary znlues problew for a coupled system of nontinear frictional differentiol egriotions. International Journal of Differential Equations. Article ID 186928, 12 pages, 2010. DOI: https://doi.org/10.1155/2010/186928

W. Yang; Positive solutions for a coupled systew of nondinew froctional differential ayaations nith integral boundary conditions. Comput. Math. Appl. 63, PP. 88-297, 2012. DOI: https://doi.org/10.1016/j.camwa.2011.11.021

W. Yang: Three-point houndary colue probems for a coupled sustem of nonlinear fractional aifferential equations. J. Appl. Math. & Informatics. 30(5-6), Pp. 773-7B5, 2012.

Y. Zhang, Z. Bai, T. Feng; Existence msults for a coupled systent of wonlinear fractiand tirec-point boundary ฉalue probens at resonintce. Comput. Math. Appl. 61, pp. 1032-1047, 2011. DOI: https://doi.org/10.1016/j.camwa.2010.12.053

S. Zhang; Pasitive sodations for boundary oulie problems of nonfinear fractional differentias ofuations, Electron. J. Differential Equations. 2(36), Pp. 12-19, 2006.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2015

How to Cite

M. Houas, M. Benbachir, and Z. Dahmani. “Some Results for a Four-Point Boundary Value Problems for a Coupled System Involving Caputo Derivatives”. Malaya Journal of Matematik, vol. 3, no. 01, Jan. 2015, pp. 30-44, doi:10.26637/mjm301/004.