Some Results for a Four-Point Boundary Value Problems for a Coupled System Involving Caputo Derivatives
Downloads
DOI:
https://doi.org/10.26637/mjm301/004Abstract
Motivated by the problem (1.1) in [5], in this paper, we prove the existence and uniqueness of solutions for the following system of fractional differential equations with four point boundary conditions:
$$
\left\{\begin{array}{l}
D^\alpha x(t)+f\left(t, y(t), D^\delta y(t)\right)=0, t \in J \\
D^\beta y(t)+g\left(t, x(t), D^\sigma x(t)\right)=0, t \in J \\
x(0)=y(0)=0, x(1)-\lambda_1 x(\eta)=0, y(1)-\lambda_1 y(\eta)=0 \\
x^{\prime \prime}(0)=y^{\prime \prime}(0)=0, x^{\prime \prime}(1)-\lambda_2 x^{\prime \prime}(\xi)=0, y^{\prime \prime}(1)-\lambda_2 y^{\prime \prime}(\xi)=0
\end{array}\right.
$$
where \(3<\alpha, \beta \leq 4, \alpha-2<\sigma \leq \alpha-1, \beta-2<\delta \leq \beta-1,0<\xi, \eta<1\), and \(D^\alpha, D^\beta\), \(D^\delta\) and \(D^\sigma\), are the Caputo fractional derivatives, \(J=[0,1], \lambda_1, \lambda_2\) are real constants with \(\lambda_1 \eta \neq 1, \lambda_2 \xi \neq 1\) and \(f, g\) continuous functions on \([0,1] \times \mathbb{R}^2\).
Keywords:
Caputo derivative, Boundary Value Problem, fixed point theoremMathematics Subject Classification:
26A33, 34B25, 34B15- Pages: 30-44
- Date Published: 01-01-2015
- Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
B. Ahmad, N. Juan, J. A. Aalsaedi: Exisfence and uniquetiess of solvions for noulbiear frictional differential mpuations with non-scparated type integral boundary conditions. Acta Mathematica Scientia. 31 B(6), Pp. 2122. $2130,2011$. DOI: https://doi.org/10.1016/S0252-9602(11)60388-3
B. Ahmad, J. Nieto: Existence resalts for a coupled system of nonlinewr froctiond differentiol equations with tirec-point boundary conditions: Computers & Mathematics with Applications. 58(9), pp. 1838-1843, 2009. DOI: https://doi.org/10.1016/j.camwa.2009.07.091
C. Bai, J.-X. Fang: The existence of a positize solution for a singular coupled system of nonlinour fractional differential equations. Applied Mathematics and Computation. 150(3), PP. 611-621, 2004. DOI: https://doi.org/10.1016/S0096-3003(03)00294-7
Z. Cui, P. Yu and Z. Mace Existence of solutions for nonlocal boundary velue problems of novlineir fractional differential equations. Adnances in Dymamical Systews and Applications. 7(1), pp. 31-40, 2012.
Z. Dahmani, L. Tabharit: Fractional arder differentiol equations inzolving Capufo derioutrie. Theory and Applicafions of Mathematics Computer Science. 4(1), Pp. 40-55, 2014. DOI: https://doi.org/10.12816/0006186
D. Delbosco, L. Rodino: Existence and unigueness for a novionear froctional diffencufial efuations. J- Math. Anal. Appl. 204 (3-4), pp. 429-440, 1996.
K. Diethelm, N.J. Ford: Analysis of fractiona differential equathons. ]. Math. Anal. Appl. 265(2), Pp. 229-248, 2002. DOI: https://doi.org/10.1006/jmaa.2000.7194
K. Diethelm, G. Walz Nawerical solation of fraction onder differential equations by extrapolation. Namer. Algorititms. $16(3), mathrm{PP} .231-253,1998$. DOI: https://doi.org/10.1023/A:1019147432240
A.M.A. El-Sayed: Nuilinear functional differential equations of arbitriry onders. Natlinear Andi. 33(2), PP. $181-186,1998$ DOI: https://doi.org/10.1016/S0362-546X(97)00525-7
W. Feng, S. Sun, Z. Han, y. Zhao: Exisfence of solutions for a singular system of nunlinear frochanat differential equations, Comput. Math. Appl. 62, Pp. 1370-1378, 2011. DOI: https://doi.org/10.1016/j.camwa.2011.03.076
V. Gafiychuk, B. Datsko, and V. Meleshko. Mathenationl nodeling of time fractional moction-diffusian systems. Journal of Computational and Applied Mathematics. 220(1-2), pp. 215-225, 2008. DOI: https://doi.org/10.1016/j.cam.2007.08.011
M. Houas, Z Dahmani: New fractional results for a boundary value problem with caputo derivative. Paper Accepted in IJOPCM Journal of Open Problems, 2013. DOI: https://doi.org/10.12816/0006167
A.A. Kilbas, S.A. Marzan: Nonlinear differential equation with the Coputo fraction derizatioe in the space af contimavusfy differertiable fionctions. Differ. Eque 41(1), PP. 84-89, 2005. DOI: https://doi.org/10.1007/s10625-005-0137-y
V, Lakshmikantham, A.S. Vatsala: Basic theory of fractional diffenutial equations. NonIinear Anal, 69(8), PP. $2677-2682,2008$ DOI: https://doi.org/10.1016/j.na.2007.08.042
F. Mainardi, Fmctional colculus: soun busic pmolcm in contiunaon and statistical wechorics. Fractals and fractional calculus in continaаш mechanics, Springer, Vіеняа. 1997. DOI: https://doi.org/10.1007/978-3-7091-2664-6_7
D.X. Ma, X.Z. Yang: Upper and lower solution method for fouctir-onder four-point boundity velue probiems. Journal of Computational and Applied Mathematics 223, pp. 543-551, 2009. inclusians wuith fractional integnd foundery conditions. Fournal of Fnactional Calculus and Appliontians, 3(9), PP. $1-14,2012$. DOI: https://doi.org/10.1016/j.cam.2007.10.051
I. Podlubny, 1. Petras, B.M. Vinagre, P. O leary, L. Dorcak: Analogue renlizations of frictiontil-onier coutrollers. Fractional order calculas and its applications, Nonlinear Dynam. 2944), pp. 281-296, 2002. DOI: https://doi.org/10.1023/A:1016556604320
M.U. Rehman, R.A Khan and N.A Asit :Three point boundiry talue problems for nonlinetr fractional differential ejuations. Acta Mathematica Scientia. 31B(4), pp.1337-1346, 2011. DOI: https://doi.org/10.1016/S0252-9602(11)60320-2
M. Rehuman, R. Khan: A Note on boundury zulue problems for a colcpled systen of fractional differentad equathons. Comput. Math. Appi, 61, pp. 2630-2637, 2011. DOI: https://doi.org/10.1016/j.camwa.2011.03.009
X. Su: Boundary zvlue problew for a coupled syctew of nonlinen fractional differential oruations. Applied Mathematics Letters. 22(1), Pp. 64-69, 2009 . DOI: https://doi.org/10.1016/j.aml.2008.03.001
G. Wang, R. P. Agarwal, and A. Cabada: Existence results and monotone iteretine technigue for systems of monlinae frictional differential equations. Applied Mathematics Letters. 25, pp. 1019-1024, 2012. DOI: https://doi.org/10.1016/j.aml.2011.09.078
J. Wang, H. Xiang, and Z. Liu: Pasitize solution to monzem boundary znlues problew for a coupled system of nontinear frictional differentiol egriotions. International Journal of Differential Equations. Article ID 186928, 12 pages, 2010. DOI: https://doi.org/10.1155/2010/186928
W. Yang; Positive solutions for a coupled systew of nondinew froctional differential ayaations nith integral boundary conditions. Comput. Math. Appl. 63, PP. 88-297, 2012. DOI: https://doi.org/10.1016/j.camwa.2011.11.021
W. Yang: Three-point houndary colue probems for a coupled sustem of nonlinear fractional aifferential equations. J. Appl. Math. & Informatics. 30(5-6), Pp. 773-7B5, 2012.
Y. Zhang, Z. Bai, T. Feng; Existence msults for a coupled systent of wonlinear fractiand tirec-point boundary ฉalue probens at resonintce. Comput. Math. Appl. 61, pp. 1032-1047, 2011. DOI: https://doi.org/10.1016/j.camwa.2010.12.053
S. Zhang; Pasitive sodations for boundary oulie problems of nonfinear fractional differentias ofuations, Electron. J. Differential Equations. 2(36), Pp. 12-19, 2006.
- NA
Similar Articles
- Dipankar Rana, Sankar Kumar Roy, Concept Lattice: A rough set approach , Malaya Journal of Matematik: Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.