Some curvature properties of \( (κ, \mu)\) contact space forms

Downloads

DOI:

https://doi.org/10.26637/mjm301/005

Abstract

The object of the present paper is to find Ricci tensor of \((k, \mu)\) space forms. In particular we prove that a three dimensional \((k, \mu)\) space forms is \(\eta\)-Einstein for \(\mu=\frac{1}{2}\). We also study three dimensional \((k, \mu)\) space forms with \(\eta\)- parallel and cyclic parallel Ricci tensor for \(\mu=\frac{1}{2}\). We also prove that every \((k, \mu)\) space forms is locally \(\phi\)- symmetric.

Keywords:

locally φ− symmetric, \((k, \mu)\) contact space forms, \(\eta\)−Einstein, \(\eta\)\− parallel and cyclic parallel Ricci tensor

Mathematics Subject Classification:

53C25, 53D15
  • Pages: 45-50
  • Date Published: 01-01-2015
  • Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)

Ali Akbar and Avijit Sarkar, Some curvature properties of Trans-Sasakian Manifolds, Lodridevakii Journa of Mathenatics, $35(2)(2014), 56-66$. DOI: https://doi.org/10.1134/S1995080214020024

Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric manifolds satisfying a nullity condition, Israd J. of Math., 19(1995), 189-214. DOI: https://doi.org/10.1007/BF02761646

D. E. Blaie, J. S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold. fournal of tinc Konate Matinematical Sociefy, 42(5)(2005), 883-892. DOI: https://doi.org/10.4134/JKMS.2005.42.5.883

D. E. Blair, Contact Manjfolds in Rientsnian Geonetry, Lecture Notes in Math., No. 509, Springer 1976. DOI: https://doi.org/10.1007/BFb0079308

De, U. C and Sarkar, A., On three-dimensional trans-Sasakian manifold, Exfricfa Mathenmhome, $23(3)(2008), 265-270$

De, U.C. and Sarkar, A., On 中-Ricci symmetric Sasakian manifolds, Pracnedings of the Jangjeon Matheunatica? Soc., 11(1)(2008), 47-52.

Kon, M, Invariat submanifolds in Sasakian manifolds, Math. Ann., 219(1976), 277-290. DOI: https://doi.org/10.1007/BF01354288

T. Koufogiorgos, Contact Riemannian manifolds with constant $phi$ - sectional curvature, Geonietry and Topology of subbmanifalds, 8(1995), 195-197.

Ki, U-H and Nakagawa, H.A.: A characterization of the Cartan hypersurfaces in a sphere, Tolioku Mlofh $J$.. $391987,27-40$.

Takahashi. T., Sasakian ф-symmetric spaces, Tohokar Math. }., 29(1977), 91-113. DOI: https://doi.org/10.2748/tmj/1178240699

  • NA

Metrics

Metrics Loading ...

Published

01-01-2015

How to Cite

Ali Akbar, and Avijit Sarkar. “Some Curvature Properties of \( (κ, \mu)\) Contact Space Forms”. Malaya Journal of Matematik, vol. 3, no. 01, Jan. 2015, pp. 45-50, doi:10.26637/mjm301/005.