Some curvature properties of \( (κ, \mu)\) contact space forms
Downloads
DOI:
https://doi.org/10.26637/mjm301/005Abstract
The object of the present paper is to find Ricci tensor of \((k, \mu)\) space forms. In particular we prove that a three dimensional \((k, \mu)\) space forms is \(\eta\)-Einstein for \(\mu=\frac{1}{2}\). We also study three dimensional \((k, \mu)\) space forms with \(\eta\)- parallel and cyclic parallel Ricci tensor for \(\mu=\frac{1}{2}\). We also prove that every \((k, \mu)\) space forms is locally \(\phi\)- symmetric.
Keywords:
locally φ− symmetric, \((k, \mu)\) contact space forms, \(\eta\)−Einstein, \(\eta\)\− parallel and cyclic parallel Ricci tensorMathematics Subject Classification:
53C25, 53D15- Pages: 45-50
- Date Published: 01-01-2015
- Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
Ali Akbar and Avijit Sarkar, Some curvature properties of Trans-Sasakian Manifolds, Lodridevakii Journa of Mathenatics, $35(2)(2014), 56-66$. DOI: https://doi.org/10.1134/S1995080214020024
Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric manifolds satisfying a nullity condition, Israd J. of Math., 19(1995), 189-214. DOI: https://doi.org/10.1007/BF02761646
D. E. Blaie, J. S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold. fournal of tinc Konate Matinematical Sociefy, 42(5)(2005), 883-892. DOI: https://doi.org/10.4134/JKMS.2005.42.5.883
D. E. Blair, Contact Manjfolds in Rientsnian Geonetry, Lecture Notes in Math., No. 509, Springer 1976. DOI: https://doi.org/10.1007/BFb0079308
De, U. C and Sarkar, A., On three-dimensional trans-Sasakian manifold, Exfricfa Mathenmhome, $23(3)(2008), 265-270$
De, U.C. and Sarkar, A., On 中-Ricci symmetric Sasakian manifolds, Pracnedings of the Jangjeon Matheunatica? Soc., 11(1)(2008), 47-52.
Kon, M, Invariat submanifolds in Sasakian manifolds, Math. Ann., 219(1976), 277-290. DOI: https://doi.org/10.1007/BF01354288
T. Koufogiorgos, Contact Riemannian manifolds with constant $phi$ - sectional curvature, Geonietry and Topology of subbmanifalds, 8(1995), 195-197.
Ki, U-H and Nakagawa, H.A.: A characterization of the Cartan hypersurfaces in a sphere, Tolioku Mlofh $J$.. $391987,27-40$.
Takahashi. T., Sasakian ф-symmetric spaces, Tohokar Math. }., 29(1977), 91-113. DOI: https://doi.org/10.2748/tmj/1178240699
- NA
Similar Articles
- D.B. Dhaigude, D.P. Patil, Radial symmetry of positive solutions for nonlinear elliptic boundary value problems , Malaya Journal of Matematik: Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.