Some curvature properties of (κ,μ) contact space forms

Downloads

DOI:

https://doi.org/10.26637/mjm301/005

Abstract

The object of the present paper is to find Ricci tensor of (k,μ) space forms. In particular we prove that a three dimensional (k,μ) space forms is η-Einstein for μ=12. We also study three dimensional (k,μ) space forms with η- parallel and cyclic parallel Ricci tensor for μ=12. We also prove that every (k,μ) space forms is locally ϕ- symmetric.

Keywords:

locally φ− symmetric, (k,μ) contact space forms, η−Einstein, η\− parallel and cyclic parallel Ricci tensor

Mathematics Subject Classification:

53C25, 53D15
  • Pages: 45-50
  • Date Published: 01-01-2015
  • Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)

Ali Akbar and Avijit Sarkar, Some curvature properties of Trans-Sasakian Manifolds, Lodridevakii Journa of Mathenatics, $35(2)(2014), 56-66$. DOI: https://doi.org/10.1134/S1995080214020024

Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric manifolds satisfying a nullity condition, Israd J. of Math., 19(1995), 189-214. DOI: https://doi.org/10.1007/BF02761646

D. E. Blaie, J. S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold. fournal of tinc Konate Matinematical Sociefy, 42(5)(2005), 883-892. DOI: https://doi.org/10.4134/JKMS.2005.42.5.883

D. E. Blair, Contact Manjfolds in Rientsnian Geonetry, Lecture Notes in Math., No. 509, Springer 1976. DOI: https://doi.org/10.1007/BFb0079308

De, U. C and Sarkar, A., On three-dimensional trans-Sasakian manifold, Exfricfa Mathenmhome, $23(3)(2008), 265-270$

De, U.C. and Sarkar, A., On 中-Ricci symmetric Sasakian manifolds, Pracnedings of the Jangjeon Matheunatica? Soc., 11(1)(2008), 47-52.

Kon, M, Invariat submanifolds in Sasakian manifolds, Math. Ann., 219(1976), 277-290. DOI: https://doi.org/10.1007/BF01354288

T. Koufogiorgos, Contact Riemannian manifolds with constant $phi$ - sectional curvature, Geonietry and Topology of subbmanifalds, 8(1995), 195-197.

Ki, U-H and Nakagawa, H.A.: A characterization of the Cartan hypersurfaces in a sphere, Tolioku Mlofh $J$.. $391987,27-40$.

Takahashi. T., Sasakian ф-symmetric spaces, Tohokar Math. }., 29(1977), 91-113. DOI: https://doi.org/10.2748/tmj/1178240699

  • NA

Metrics

PDF views
78
Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202610
|

Published

01-01-2015

How to Cite

Ali Akbar, and Avijit Sarkar. “Some Curvature Properties of (κ,μ) Contact Space Forms”. Malaya Journal of Matematik, vol. 3, no. 01, Jan. 2015, pp. 45-50, doi:10.26637/mjm301/005.