A spline method for solving fourth order singularly perturbed boundary value problem
Downloads
DOI:
https://doi.org/10.26637/mjm301/006Abstract
In this paper, singularly perturbed boundary value problem of fourth order ordinary differential equation with a small positive parameter multiplying with the highest derivative of the form
$$
\begin{gathered}
\varepsilon u^{(4)}(x)+p(x) u^{\prime \prime}(x)+q(x) u(x)=r(x), 0 \leq x \leq 1, \\
u(0)=\gamma_0, u(1)=\gamma_1, u^{\prime \prime}(0)=\eta_0, u^{\prime \prime}(1)=\eta_1, 0 \leq \varepsilon \leq 1
\end{gathered}
$$
is considered. We have developed a numerical technique for the above problem using parametric and polynomial septic spline method. The method is shown to have second and fourth order convergent depending on the choice of parameters involved in the method. Truncation error and boundary equations are obtained. The method is tested on an example and the results are found to be in agreement with the theoretical analysis.
Keywords:
Parametricsepticsplines, Polynomialsepticsplines, Boundaryvalueproblems, BoundaryequationsMathematics Subject Classification:
65D07, 65L10, 65L11- Pages: 51-61
- Date Published: 01-01-2015
- Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
A. H. Nayfeh, Introduction to Perfurbation Methouls, John Wiley and Sons, New York, (1981).
B. Semper, Locking in finite element approximation of long thin extensible beams, LMA ]. Numer. Anal., $14(1994), 97-109$ DOI: https://doi.org/10.1093/imanum/14.1.97
E. C. Garland, Graded mesh difference schemes for singularly pertubed two point boundary value problems, Math. Contput., 51(1988), 631-657. DOI: https://doi.org/10.1090/S0025-5718-1988-0935072-1
G. Akram and S. S. Siddiqi, End conditions for interpolatory septic splines, Inf. J. Comput. Math., $12(82)(2005), 1525-1540$ DOI: https://doi.org/10.1080/00207160412331291099
G. B. Loghmani and M. Ahmadinia, Numerical solution of singularly perturbed boundary value problems based on optimal control strategy, Acta, Appl. Math., 112(2010), 69-78. DOI: https://doi.org/10.1007/s10440-009-9553-y
G. Sun and M. Stynes, Finite element methods for singularly perturbed higher order elliptic two point boundary value problems I: Reaction diffusion type, IMA J. Nuner. And., 15(1995), 117-139.
G. Sun and M. Stynes, Finite element methods for singularly perturbed higher order elliptic two point boundary value problems II: Reaction diffusion type, IMA J. Nuner. Anal, 15(1995), 117-139, DOI: https://doi.org/10.1093/imanum/15.1.117
H. G. Roos and M. Stynes, A uniformly convergent discretization method for a fourth order singular perturbation problem, Bonner Math. Schriffen, 228 (1991), 30-40.
H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Egantions, Springer, New York, (1996). DOI: https://doi.org/10.1007/978-3-662-03206-0
J. Jayakumar and N. Ramanujam, A computational method for solving singular perturbation problems. Appl. Math. Comput, 55(1993), 31-48. DOI: https://doi.org/10.1016/0096-3003(93)90004-X
J. Jayakumar and $mathrm{N}$. Ramanujam, A numerical method for singular perturbation problems arising in chemical reactor theory, Conput. Math. Applic, $5(27)(1994), 83-99$. DOI: https://doi.org/10.1016/0898-1221(94)90078-7
K. Niederdrenk and H. Yserentant, The uniform stability of singularly perturbed discrete and continuous boundary value problems, Naner. Math., 41(1983), 223-253. DOI: https://doi.org/10.1007/BF01390214
M. Feckan, Singularly perturbed higher order boundary value problems, I. Differential Eagations, $3(1)(1994), 79-102$ DOI: https://doi.org/10.1006/jdeq.1994.1076
M. K. Jain, Numerical Solufion of Diffenential Equations, Wiley eastern Limited, New Delhi, India, (1979).
M. K. Kadalbajoo and V. Gupta, A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. Conput., 217(2010), 3641-3716. DOI: https://doi.org/10.1016/j.amc.2010.09.059
M. K. Kadalbajoo and Y. N. Reddy, Numerical treatment of singularly perturbed two point boundary value problems, Appl. Math. Comput,, 21(1987), 93-110. DOI: https://doi.org/10.1016/0096-3003(87)90020-8
M. K. Kadalbajoo and Y. N. Reddy, Approxinate nethods for fhe nanericul solution of singular pertuerhation problens, Appl. Math. Comput, 21 (1987) 85-199. DOI: https://doi.org/10.1016/0096-3003(87)90001-4
P. Henrici, Discnte Variable Methods in Ondinary Diffenential Equations, Wiley, New York, (1962).
R. K. Bawa, Spline based computational technique for linear singularly perturbed boundary value problems, Appl. Math. Conput., 167(2005), 225-236. DOI: https://doi.org/10.1016/j.amc.2004.06.112
S. Natesan and $mathrm{N}$. Ramanujam, A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers, App. Math. Conput., 93(1998), 259-275. DOI: https://doi.org/10.1016/S0096-3003(97)10056-X
T. Aziz and A. Khan, A spline method for second order singularly perturbed boundary value problems, 1. Conput. Appl. Math.s 147(2002), 445-452. DOI: https://doi.org/10.1016/S0377-0427(02)00479-X
V. Shanthi and $mathrm{N}$. Ramanujam, A numerical method for boundary value problems for singularly perturbed fourth order ordinary differential equations, Appl. Math. Comput., 129(2002), 269-294. DOI: https://doi.org/10.1016/S0096-3003(01)00040-6
V. Shanthi and N. Ramanujam, Asymptotic numerical methods for singularly perturbed fourth order ordinary differential equations of reaction diffussion type, Int. I. Compuf. Mnth. Applic., 46(2003), 463-478. DOI: https://doi.org/10.1016/S0898-1221(03)90039-3
V. Shanthi and N. Ramanujam, A boundary value technique for boundary value problems for singularly perturbed fourth order ordinary differential equations, Comput. Math. Applics. 47(2004), 1673-1688. DOI: https://doi.org/10.1016/j.camwa.2004.06.015
V. Shanthi and N. Ramanujam, Asymptotic numerical method for boundary value problems for singularly perturbed fourth order ordinary differential equations with a weak interior layer, Appl. Math. Comput., 172(2006), 252-266. DOI: https://doi.org/10.1016/j.amc.2005.01.140
- NA
Similar Articles
- Yuji Liu, Shimin Li, Periodic boundary value problems for singular fractional differential equations with impulse effects , Malaya Journal of Matematik: Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
- S. Dhanalakshmi, M. Vinitha, Existence and uniqueness of solutions for nonlinear fractional integrodifferential equations with non-local boundary conditions , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
- Zoubir Dahmani , Mohamed Amin Abdellaoui , New existence and uniqueness results for an \(\alpha\) order boundary value problem , Malaya Journal of Matematik: Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)
- Muthaiah Subramanian, Sargunam Muthu, Murugesan Manigandan, Thangaraj Nandha Gopal, On generalized Caputo fractional differential equations and inclusions with non-local generalized fractional integral boundary conditions , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
- M. Houas, M. Benbachir , Z. Dahmani, Some Results for a Four-Point Boundary Value Problems for a Coupled System Involving Caputo Derivatives , Malaya Journal of Matematik: Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.