Nonlinear \(D\)-set contraction mappings in partially ordered normed linear spaces and applications to functional hybrid integral equations
Downloads
DOI:
https://doi.org/10.26637/mjm301/007Abstract
In this paper the author introduces the notion of partially nonlinear \(D\)-set-contraction mappings in a partially ordered normed linear space and prove some hybrid fixed point theorems under certain mixed conditions from algebra, analysis and topology. The applications of abstract results presented here are given to perturbed nonlinear hybrid functional integral equations for proving the existence as well as global attractivity of the comparable solutions under certain monotonic conditions. The abstract theory developed in this paper is also useful to develop the algorithms for the solutions of some nonlinear problems of analysis and allied areas of mathematics.
Keywords:
Partial measure of noncompactness, Fixed points, Functional integral equation, Existence theorem, Attractivity of solutions, Partially nonlinear \(D\)-set-contraction mappingsMathematics Subject Classification:
45G10, 45M99, 47H09, 47H10- Pages: 62-85
- Date Published: 01-01-2015
- Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
J. Appell, Measures of noncompacthess, condensing operators and fixed points : An application-oriented survey, Fixed Point Theory, 6(2006), 157-229.
]. Banas, K. Goebel, Meassints of Nonconrpactness in Benach Space, in: Lecture Notes in Pure and Applied Mathematics, Vol. 60, Dekker, New York, 1980.
J. Banas, B. C. Dhage, Global asymptotic stability of solutions of a functional integral equations, Nonlinetr Aлаlysis, $69(2008), 1945-1952$ DOI: https://doi.org/10.1016/j.na.2007.07.038
T. A. Burton, A fixed point theorem of Krasnoselskii, Appi. Math. LeH., 11(1998), 83-88. DOI: https://doi.org/10.1016/S0893-9659(97)00138-9
T. A. Burton, B. Zhang, Fixed points and stability of an integral equation: nonuniqueness, Appl. Marth. Letfers, 17(2004), 839-846. DOI: https://doi.org/10.1016/j.aml.2004.06.015
S. Carl, S. Hekkila, Fixed Point Theory in Ordereal Sets and Applications, Springer, 2011. DOI: https://doi.org/10.1007/978-1-4419-7585-0
B. C. Dhage, Fixed point theorems in ordered Banach algebras and applications, PanAmer. Math. J., 9(4)(1999), 93-102.
B. C. Dhage, Asymptotic stability of the solution of certain nonlinear functional integral equations via measures of noncompactness, Comm. Appl. Nonlinat Anal. 15 (2008), no. 2, 89-101.
B. C. Dhage, Global attractivity results for nonlinear integral equations via a Krasnoselskii type fixed point theorem, Nonlinut Andysis, 70(2009), 2485-2493. DOI: https://doi.org/10.1016/j.na.2008.03.033
B. C. Dhage, Quadratic perturbations of boundary value problems of second order ordinary differential equations, Differ. Equ. & Appl., 2(4) (2010), 465-486. DOI: https://doi.org/10.7153/dea-02-28
B. C. Dhage, Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations, Differ. Equ. Appl, 5(2013), 155-184. DOI: https://doi.org/10.7153/dea-05-11
B. C. Dhage, Partially condensing mappings in ordered normed linear spaces and applications to functional integral equations, Tamkang J. Mafh., 45(2014), 397-426. doi.10.5556/j.tkjm.45.2014.1512. DOI: https://doi.org/10.5556/j.tkjm.45.2014.1512
B. C. Dhage, Operator theoretic techniques in the theory of nonlinear hybrid differential equations, Nonlintear Anil. Forum, 20(2015), 15-31.
B. C. Dhage, S. B. Dhage, Global attractivity and stability results for comparable solutions of nonlinear fractional integral equations, Nonlineer Sfudics, 21(2014), 256-268. DOI: https://doi.org/10.7153/dea-06-08
B. C. Dhage, S. B. Dhage, Approximating solutions of nonlinear first order ordinary differential equations, Globitl J. Math. Sci., 3(2014), 00-00.
B. C. Dhage, S. B. Dhage, D. V. Mule, Local attractivity and stability results for hybrid functional nonlinear fractional integral equations, Nontinair Funct. Anal, & Appl, 19(2014), 415-433.
B. C. Dhage, S. B. Dhage and S. K. Ntouyas, Approximating solutions of nonlinear hybrid differential equations, App, Math, Lett, $34(2014), 76-80$. DOI: https://doi.org/10.1016/j.aml.2014.04.002
I. T. Gokhberg, I. S. Goldstein and A. S. Markus, Inzestigation of some properties of bounded linetr openators in connection with their q-nom, Ucen zap Kishincosk Un-an, 29(1957), 29-36.
S. Heikkila and V. Lakshmikantham, Monotone ltenatio Techniques for Discontinuous Nonlineur Differential Eguations, Marcel Dekker inc., New York 1994.
M. A. Krasnoselskii, Topologionl Methads in the Theory of Nonlitiear Lifegral Epuntions, Translated from the Russian, Macmillan, New York, (1964).
C. Kuratowskii, Sur les espaces complete, Fund. Moth., 15(1930), 301-309. DOI: https://doi.org/10.4064/fm-15-1-301-309
J. J. Nieto and R. Rodriguez-Lopez, Contractive mappings theorems in partially ordered sets and applieations to ordinary differential equations, Onler, 22(2005), 223-239. DOI: https://doi.org/10.1007/s11083-005-9018-5
A. C. M. Ran, M.C. R. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Matic. Soc, 132(2003), 1435-1443. DOI: https://doi.org/10.1090/S0002-9939-03-07220-4
E. Zeidler, Nonlintar Functinel Analysis and its Applications: Part $I_r$ Springer Verlag 1985. DOI: https://doi.org/10.1007/978-1-4612-5020-3
Similar Articles
- Ali Akbar, Avijit Sarkar, Some curvature properties of \( (κ, \mu)\) contact space forms , Malaya Journal of Matematik: Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.