Generalization of integral inequalities of the type of Hermite-Hadamard through invexity

Downloads

DOI:

https://doi.org/10.26637/mjm301/010

Abstract

In this paper, we obtain some inequalities of Hermite-Hadamard type for functions whose derivatives absolute values are prequasiinvex function. Applications to some special means are considered.

Keywords:

Hermite-Hadamard inequality, quasi-convex function, power-mean inequality, Holder’s integral inequality

Mathematics Subject Classification:

26D07, 26D10, 26D15, 47A63
  • Shahid Qaisar Department of Mathematics, Comsats Institute of Information Technology Sahiwal Pakistan.
  • Sabir Hussain Department of Mathematics, College of Science, Qassim University,P.O. Box 6644, Buraydah 51482, Saudi Arabia.
  • Pages: 99-109
  • Date Published: 01-01-2015
  • Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)

J. Pecaric, F. Proschan and Y.L- Tong, Compex Functions, Partial Ondcring and Statistical Applications, Academic Press, New York, 1991.

M. Alomari, M. Darus and U.S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comp. Math. Appl., 59 (2010). $225-232$ DOI: https://doi.org/10.1016/j.camwa.2009.08.002

M. Alomari. M. Darus and S.S. Dragomir, New inequalities of Hermite-Hadamard's type for functions whose second derivatives absolute values are quasiconvex, Tank. J. Math., 41(2010), 353-359, DOI: https://doi.org/10.5556/j.tkjm.41.2010.498

S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Moff. Anal. Appl, 167 (1992). $42-56$ DOI: https://doi.org/10.1016/0022-247X(92)90233-4

S.S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, App. Moth. Leth, 11(1998), 91-95. DOI: https://doi.org/10.1016/S0893-9659(98)00086-X

Barani, S. Barani, and S. S. Dragomir, Refinements of Hermite-Hadamard type inequality for functions whose second derivatives absolute values are quasiconvex, RGMIA Research Repont Collection, Vol. 14, Article $69,2011$. DOI: https://doi.org/10.1186/1029-242X-2012-247

】 S, S. Dragomie, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications. ]. Math. Andi. Appl., 245(2000), 489-501. DOI: https://doi.org/10.1006/jmaa.2000.6769

D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of Livieersity of Craivevt Matir.Conip. Sci.Ser., 34(2007), 82-87.

U.S. Kirmaci, Inequalities for differentiable mappings and applicatios to special means of real numbers to midpoint formula, Appl. Math. Camp., 147 (2004), 137-146. DOI: https://doi.org/10.1016/S0096-3003(02)00657-4

U. S. Kirmaci and M. E. Ozdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, App.. Math. Conrp., 153(2004), 361-368. DOI: https://doi.org/10.1016/S0096-3003(03)00637-4

C. E. M. Pearoe and J. Pecaric, Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Mofh. Lett., 13(2000), 51-55. DOI: https://doi.org/10.1016/S0893-9659(99)00164-0

G. S. Yang, D.Y, Hwang and K K. L. Tseng, Some inequalities for differentiable convex and concave mappings, App. Muth. Lett., 47(2004), 2017-216. DOI: https://doi.org/10.1016/S0898-1221(04)90017-X

L. Chun and F. Qi, Integral inequalities for Hermite-Hadamard type for functions whose 3rd derivatives are s-convex, Applied Mafhentics, 3(2012), 1680-1885. DOI: https://doi.org/10.4236/am.2012.311232

PS. Bullen. Handloak of Means and Their Inegralifies, Kluwer Academic Publishers, Dordrecht, 2003.

A. Barani, A.G. Ghazanfari, S.S. Dragomir. Hermite-Hadamard inequality through prequsi-invex functions, RGMIA Resendi Report Callection, 14(2011). Article 4s, 7 pages.

A. Barani, A.G. Ghazanfari, S.S. Dragomii, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, RGMIA Resancit Report Callection, 14(2011), Article 64, 11 pages.

M. As]am Noot, Hermite-Hadamard integral inequalities for log-preinvex functions, Preprint.

M. A. Noor, Some new classes of nonconvex functions, Nori. Funct. Anal. Appl., 11(2006),165-171.

M. Z. Sarikaya, H. Bockurt and N. Alp. On Hermite-Hadamard type integral inequalīties for preīnvex and log-preinvex functions, arXiv:1203.4759v 1.

T. Weir, and B. Mond, Preinvex functions in multiple bijective optimization, Journal of Mathention Antysis and Applichtots, 136(1998), 20-38. DOI: https://doi.org/10.1016/0022-247X(88)90113-8

X.M. Yang. X.Q. Yang and K.L. Teo, Characterizations and applications of prequasiinvex functions, properties of preinvex functions, J. Optim. Threo. Appl., 110(2001) 645-668. DOI: https://doi.org/10.1023/A:1017544513305

S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMLA Monographs, Victoria University, 2000. Online: http:/ / ww:staff.vu.edu.au/RGM1A/monographs/hermite hadamard.html.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2015

How to Cite

Shahid Qaisar, and Sabir Hussain. “Generalization of Integral Inequalities of the Type of Hermite-Hadamard through Invexity”. Malaya Journal of Matematik, vol. 3, no. 01, Jan. 2015, pp. 99-109, doi:10.26637/mjm301/010.