A new generalized vector-valued paranormed sequence space using modulus function
Downloads
DOI:
https://doi.org/10.26637/mjm301/011Abstract
In this paper we introduce a new generalized vector-valued paranormed sequence spaces \(N_p\left(E_k, \triangle_u^m, f, s\right)\) using modulus function \(f\), where \(p=\left(p_k\right)\) is a bounded sequence of positive real numbers such that \(\inf _k p_k>\) \(0,\left(E_k, q_k\right)\) is a sequence of seminormed spaces with \(E_{k+1} \subseteq E_k\) for each \(k \in N\) and \(s \geq 0\). We prove results regarding completeness, \(K\)-space, normality, inclusion relation are derived. These are more general than those of Ruckle [7], Maddox [5], Ozturk and Bilgin [6], Sahiner [8], Atlin et al. [1] and Srivastava and Kumar [9].
Keywords:
Modulus function, paranormed space, normal sequence space, difference sequence spaceMathematics Subject Classification:
40A45, 46A45- Pages: 110-118
- Date Published: 01-01-2015
- Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
Y. Altin, M. Isik and R. Colak, A New system of sequence space defined by modulus, Studia Liniv: Babes-Bolyai Mathenatica 53(2), 2008 3-13.
M. Et. and R. Colak, On some generalized difference sequence spaces, Soodhow J. Math. 21(4), 1995 $377-386$.
P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York, Basel, 981.
H. Kizmaz, On certain sequence spaces, Can. Math. Bull., 24(2),(1981)169-176. DOI: https://doi.org/10.4153/CMB-1981-027-5
1. J. Maddox Sequence spaces defined by a modulus, Math. Proc. Canbridge Philos. Soc.. $(100),(1986) 161-166$. DOI: https://doi.org/10.1017/S0305004100065968
E. Ozturk and T. Bilgin, Strongly summable sequence spaces defined by a modulus, Ind. J.Pure Appl. Math., 25(6),(1994)621-625.
W. H. Ruckle, F. K. spaces in which the sequence of coordinate vectors is bounded, Can. I. Math. $25(5),(1973) 973-978$. DOI: https://doi.org/10.4153/CJM-1973-102-9
A. Sahiner, Some new paranormed spaces defined by modulus function, Ind. l.Pure Appl. Math. $33(12),(2002) 1877-1888$.
P. D. Srivastava and S. Kumar, Generalised vector valued paranormed sequence spaces using modulus function Appl. Math. and Comput., 215, (2010)4110-4118. DOI: https://doi.org/10.1016/j.amc.2009.12.012
B. C. Tripathy and A. Esi, A new type of difference sequence space, Int. I. Sci. Techno., (1)(2006), 11-14
A. Wilansky, Summability Through Functional Analysis, vol. 85, North-Holland Mathematics Studies, Amsterdam, Netherlands, 1984.
- NA
Similar Articles
- M. Murali krishna Rao, B. Venkateswarlu, Fuzzy filters in \(\Gamma\)−semirings , Malaya Journal of Matematik: Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.