Generalized Mizoguchi-Takahashi contraction in consideration of common tripled fixed point theorem for hybrid pair of mappings
Downloads
DOI:
https://doi.org/10.26637/mjm301/012Abstract
We establish a common tripled fixed point theorem for hybrid pair of mappings under generalized Mizoguchi-Takahashi contraction. It is to be noted that to find tripled coincidence point, we do not employ the condition of continuity of any mapping involved therein. An example is also given to validate our result. We improve, extend and generalize several known results.
Keywords:
Mizoguchi-Takahashi contraction, fixed point theoremMathematics Subject Classification:
34G20- Pages: 119-130
- Date Published: 01-01-2015
- Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
M. Abbas, H. Aydi and E. Karapinar, Tripled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Abstr. Appl. Anal., Volume 2011 (2011), Article ID 812690, 12 pages. DOI: https://doi.org/10.1155/2011/812690
M. Abbas, L. Ciric, B. Damjanovic and M. A. Khan, Coupled coincidence point and common fixed point theorems for hybrid pair of mappings, Fixed Point Theory Appl., doi:10.1186/1687-1812-2012-4 (2012). DOI: https://doi.org/10.1186/1687-1812-2012-4
S. M. Alsulami and A. Alotaibi, Tripled coincidence points for monotone operators in partially ordered metric spaces, Intermational Mathenatical Forum, 7(37)(2012), 1811-1824. DOI: https://doi.org/10.1186/1687-1812-2012-173
A. Amini-Harandi and D, O'Regan, Fixed point theorems for set-valued contraction type mappings in metric spaces, Fixed Point Theory Appl. 7(2010), Article ID 390183. DOI: https://doi.org/10.1155/2010/390183
H. Aydi, E. Karapinar and M. Postolache, Tripled coincidence point theorems for weak $varphi$-contractions in partially ordered metric spaces, Fixed Point Theory Appl., 44(2012), 1-15.
H. Aydi and E. Karapinar, Triple fixed points in ordered metric spaces, Budl. Math. Anal. Appl., 4(1)(2012), $197-207$ DOI: https://doi.org/10.1186/1687-1812-2012-44
H. Aydi and E. Karapinar, New Meir-Keeler type tripled fixed point theorems on partially ordered metric spaces, Mathematical Problens in Enginecring, Volume 2012, Article ID 409872, 17 pages. DOI: https://doi.org/10.1155/2012/409872
H. Aydi, E. Karapinar and C. Vetro, Meir-Keeler type contractions for tripled fixed points, Acta Mathematica Scientia, 2012, 32B (6): 2119-2130. DOI: https://doi.org/10.1016/S0252-9602(12)60164-7
S. Banach, Sur les Operations dans les Ensembles Abstraits et leur. Applications aux Equations Integrals, Fund. Math, 3(1922), 133-181. DOI: https://doi.org/10.4064/fm-3-1-133-181
V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74(15)(2011), 4889-4897. DOI: https://doi.org/10.1016/j.na.2011.03.032
V. Berinde and M. Borcut, Tripled coincidence theorems of contractive type mappings in partially ordered metric spaces, Appl. Math. Comput., 218(10), 5929-5936. DOI: https://doi.org/10.1016/j.amc.2011.11.049
T, G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal, 65(7) (2006), 1379-1393. DOI: https://doi.org/10.1016/j.na.2005.10.017
L. Ciric, B. Damjanovic, M. Jleli and B. Samet, Coupled fixed point theorems for generalized MizoguchiTakahashi contractions with applications, Fixed Point Theory Appl., (2012), $2012: 51$. DOI: https://doi.org/10.1186/1687-1812-2012-51
P. Charoensawan, Tripled fixed points theorems of $varphi$-contractive mixed monotone operators on partially ordered metric spaces, Appl. Math. Sci, 6(105)(2012), 5229-5239. DOI: https://doi.org/10.1186/1687-1812-2012-172
B. Deshpande, Common fixed point for set and single valued functions without continuity and compatibility, Mathennatici Moravica, 11(2007), 27-38. DOI: https://doi.org/10.5937/MatMor0711027D
B. Deshpande and R. Pathak, Fixed point theorems for non compatible discontinuous hybrid pairs of mappings on 2- metric spaces, Dennonstratio Mathemation, XLV (1) 2012, 143-154. DOI: https://doi.org/10.1515/dema-2013-0351
B. Deshpande and A. Handa, Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations, Afr. Mat., DOI $10.1007 / mathrm{s} 13370-013-02040$.
B. Deshpande and A. Handa, Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces, Adv. Fuzzy Syst., Volume 2014, Article ID 348069, 11 pages. DOI: https://doi.org/10.1155/2014/348069
B. Deshpande, S. Sharma and A. Handa, Tripled fixed point theorem for hybrid pair of mappings under generalized nonlinear contraction, I. Konan Soc. Math. Educ. Ser. B: Punc Appl. Math., 21 (1) (2014), 23-38. DOI: https://doi.org/10.7468/jksmeb.2014.21.1.23
W. S. Du, Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi-Takahashi's condition in quasi ordered metric spaces, Fixed Point Theory Appl., 2010, 9 (2010) Article ID 876372. DOI: https://doi.org/10.1155/2010/876372
J. Harjani, B. Lopez and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal, 74 (2011), 1749-1760. DOI: https://doi.org/10.1016/j.na.2010.10.047
I. Kubiaczyk and B. Deshpande, A common fixed point theorem for multi-valued mappings through T-weak commutativity, Mathenafica Montuica, 10 (2006), 55-60. DOI: https://doi.org/10.5937/MatMor0610060K
I. Kubiaczyk and B. Deshpande, Common fixed point of multi-valued mappings without continuity, Fasciculi Mathematici, 37(9)(2007), $19-26$.
V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear And., $70(12)(2009), 4341-4349$, DOI: https://doi.org/10.1016/j.na.2008.09.020
W. Long, S. Shukla and S. Radenovic, Some coupled coincidence and common fixed point results for hybrid pair of mappings in 0-complete partial metric spaces, Fixed Point Theory Appl., (2013), $2013: 145$. DOI: https://doi.org/10.1186/1687-1812-2013-145
N. Mizoguchi and W. Takahashi, Fixed point theorems for multi-valued mappings on complete metric spaces, I. Math. Anal. Appl., 141 (1989), 177-188. DOI: https://doi.org/10.1016/0022-247X(89)90214-X
S. B. Nadler, Multi-valued contraction mappings, Pacific ]. Math, 30(1969), 475-488. DOI: https://doi.org/10.2140/pjm.1969.30.475
B. Samet and C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funcf, Anal, $1(2010), 46-56$ DOI: https://doi.org/10.15352/afa/1399900586
B. Samet, E. Karapinar, H. Aydi and V. C. Rajic, Discussion on some coupled fixed point theorems, Fixed Point Theory Appl., (2013), $2013: 50$. DOI: https://doi.org/10.1186/1687-1812-2013-50
S. Sharma and B. Deshpande, Fixed point theorems for set and single valued mappings without continuity and compatibility, Demonstratio Mathematica, XL (3) (2007), 649-658. DOI: https://doi.org/10.1515/dema-2007-0315
- NA
Similar Articles
- Shahid Qaisar, Sabir Hussain, Generalization of integral inequalities of the type of Hermite-Hadamard through invexity , Malaya Journal of Matematik: Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.