General energy decay for nonlinear wave equation of \(\phi\)−Laplacian type with a delay term in the internal feedback
Downloads
DOI:
https://doi.org/10.26637/mjm302/002Abstract
Under conditions on the delay term, using the multiplier method and general weighted integral inequalities, we study the question of asymptotic behavior of solutions for a nonlinear wave equation with \(\phi\)-Laplacian operator and a delay term in the internal feedback.
Keywords:
Nonlinear wave equation, Time delay term, Decay rate, Multiplier method, \(\phi\)−LaplacianMathematics Subject Classification:
35B40, 35L70- Pages: 143-152
- Date Published: 01-04-2015
- Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim. 51:1 (2005), 61-105. DOI: https://doi.org/10.1007/s00245
V. I. Arnold, Mathematical Methods of Classical Mechanics, Translated from the Russian by K. Vogtmann and A. Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. DOI: https://doi.org/10.1007/978-1-4757-2063-1
A. Benaissa and A. Guesmia, Energy decay for wave equations of $phi$-Laplacian type with weakly nonlinear dissipation, Electron. J. Differential Equations 2008, No. 109, 22.
M. M. Cavalcanti, V. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping - source interaction, J. Differential Equations 236:2 (2007), $407-459$. DOI: https://doi.org/10.1016/j.jde.2007.02.004
G. Chen, Control and stabilization for the wave equation in a bounded domain, SIAM J. Control Optim. $17: 1(1979), 66-81$. DOI: https://doi.org/10.1137/0317007
G. Chen, Control and stabilization for the wave equation in a bounded domain. II, SIAM J. Control Optim. 19:1(1981), 114-122. DOI: https://doi.org/10.1137/0319009
M. Daoulatli, I. Lasiecka, and D. Toundykov, Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions, Discrete Contin. Dyn. Syst. Ser. S $2: 1(2009), 67-94$ DOI: https://doi.org/10.3934/dcdss.2009.2.67
R. Datko, J. Lagnese, and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24:1 (1986), 152-156. DOI: https://doi.org/10.1137/0324007
M. Eller, J. E. Lagnese, and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comput. Appl. Math. 21:1 (2002), 135-165.
A. Guesmia, Inégalités intégrales et application à la stabilisation des systèmes distribués non dissipatifs, HDR thesis, Paul Verlaine-Metz Univeristy, 2006.
A. Haraux, Two remarks on hyperbolic dissipative problems, in: Nonlinear partial differential equations and their applications. College de France seminar, Vol. VII (Paris, 1983-1984), 6, pp. 161-179, Res. Notes in Math., 122, Pitman, Boston, MA, 1985.
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.
I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6:3 (1993), 507-533. DOI: https://doi.org/10.57262/die/1370378427
I. Lasiecka, Mathematical Control Theory of Coupled PDEs, CBMS-NSF Regional Conference Series in Applied Mathematics, 75. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. DOI: https://doi.org/10.1137/1.9780898717099
I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal. 64:8 (2006), 1757-1797. DOI: https://doi.org/10.1016/j.na.2005.07.024
W. J. Liu and E. Zuazua, Decay rates for dissipative wave equations, Ricerche Mat. 48 (1999), suppl., 61-75.
Mama Abdelli and Salim A. Messaoudi, Energy decay for degenerate Kirchhoff equations with weakly nonlinear dissipation, Electron. J. Differ. Equ., 222 (2013), 1-7.
M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl. 60:2 (1977), $542-549$. DOI: https://doi.org/10.1016/0022-247X(77)90040-3
S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45:5 (2006), 1561-1585 (electronic). DOI: https://doi.org/10.1137/060648891
S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differential Integral Equations 21:9-10 (2008), 935-958. DOI: https://doi.org/10.57262/die/1356038593
C. Q. Xu, S. P. Yung, and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var. 12:4 (2006), 770-785 (electronic). DOI: https://doi.org/10.1051/cocv:2006021
- NA
Similar Articles
- Bhavana Deshpande, Amrish Handa, Generalized Mizoguchi-Takahashi contraction in consideration of common tripled fixed point theorem for hybrid pair of mappings , Malaya Journal of Matematik: Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.