Some vector-valued statistical convergent sequence spaces
Downloads
DOI:
https://doi.org/10.26637/mjm302/004Abstract
In the present paper we introduce some vector-valued statistical convergent sequence spaces defined by a sequence of modulus functions associated with multiplier sequences and we also make an effort to study some topological properties and inclusion relation between these spaces.
Keywords:
Modulus function, paranorm space, difference sequence space, statistical convergenceMathematics Subject Classification:
40A05, 46A45, 40C05- Pages: 161-167
- Date Published: 01-04-2015
- Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
Altinok H., Altin Y., Isik M. The Sequence Space $B v_sigma(M, P, Q, S)$ On Seminormed Spaces, Indian J. Pure Appl. Math., 39 (2008), 49-58.
Colak R. On invariant sequence spaces, Erc. Univ. J. Sci., 5 (1989), 881-887.
Colak R. On certain sequence spaces and their Kothe-Toeplitz duals, Rend. Mat. Appl., Ser, 13 (1993), 27-39.
Et M., Colak R. On some generalized difference sequence spaces, Soochow J. Math., 21 (1995), $377-386$.
Connor J. S. A topological and functional analytic approach to statistical convergence, Appl. Numer. Harmonic Anal.,(1999), 403-413. DOI: https://doi.org/10.1007/978-1-4612-2236-1_23
Fast H. Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. DOI: https://doi.org/10.4064/cm-2-3-4-241-244
Fridy J. A. On the statistical convergence, Analysis, 5 (1985), 301-303. DOI: https://doi.org/10.1524/anly.1985.5.4.301
Goes G., Goes S. Sequence of bounded variation and sequences of Fourier coefficients, Math. Zeit, 118 (1970), $93-102$. DOI: https://doi.org/10.1007/BF01110177
Gupta M. The generalized spaces $l^1(X)$ and $m_0(X)$, J. Math. Anal. Appl., 76 (1980), 357-366. DOI: https://doi.org/10.1016/0022-247X(80)90153-5
Isik M. On statistical convergence of generalized difference sequence spaces, Soochow J. Math., 30 (2004), $197-$ 205.
Kamthan P. K. Bases in a certain class of Frechet spaces, Tamkang J. Math., 7 (1976), 41-49.
Kizmaz H. On certain sequence spaces, Cand. Math. Bull., 24 (1981), 169-176. DOI: https://doi.org/10.4153/CMB-1981-027-5
Kolk E. The statistical convergence in Banach spaces, Acta. Comment. Univ. Tartu, 928 (1991), 41-52.
Leonard I. E. Banach sequence spaces, J. Math. Anal. Appl., 54 (1976), 245-265. DOI: https://doi.org/10.1016/0022-247X(76)90248-1
Maddox I. J. Statistical convergence in a locally convex space, Math. Proc. Cambridge Phil. Soc., 104 (1988), 141-145. DOI: https://doi.org/10.1017/S0305004100065312
Mursaleen M. A-statistical convergence, Math. Slovaca, 50 (2000), 111-115.
Ratha A., Srivastava P. D. On some vector valued sequence spaces $mathcal{L}_{infty}^{(p)}left(E_k, Lambdaright)$, Ganita, 47 (1996), 1-12.
Raj K., Sharma S. K. Difference sequence spaces defined by sequence of modulus function, Proyecciones, 30 (2011), 189-199.
Raj K., Sharma S. K. Some difference sequence spaces defined by sequence of modulus function, Int. J. Math. Archive, 2 (2011), pp. 236-240. DOI: https://doi.org/10.4067/S0716-09172011000200005
Salat T. On statictical convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
Savas E. Strong almost convergence and almost $lambda$-statistical convergence, Hokkaido Math. J., 29 (2000), 531566. DOI: https://doi.org/10.14492/hokmj/1350912989
Savas E. On some generalized sequence spaces defined by a modulus, Indian J. pure Appl. Math., 30 (1999), $459-464$.
Schoenberg I. J. The integrability of certain functions and related summability methods, Amer. Math. Monthly, $66(1959), 361-375$ DOI: https://doi.org/10.2307/2308747
Srivastava J. K., Srivastava B. K. Generalized sequence space $c_0(X, lambda, p)$, Indian J. pure Appl. Math., 27 (1996), 73-84.
Tripathy B. C., Sen M. On generalized statistically convergent sequences, Indian J. Pure Appl. Math., 32 (2001), 1689-1694.
Tripathy B. C., Sen M. Vector valued paranormed bounded and null sequence spaces associated with multiplier sequences, Soochow J. Math., 29 (2003), 379-391.
Tripathy B. C., Mahanta S. On a class of vector valued sequences associated with multiplier sequences, Acta Math. Appl. Sinica, 20 (2004), 487-494. DOI: https://doi.org/10.1007/s10255-004-0186-7
Wilansky A. Summability through Functional Analysis, North- Holland Math. Stud. (1984).
- NA
Similar Articles
- Khaled ZENNIR, General energy decay for nonlinear wave equation of \(\phi\)−Laplacian type with a delay term in the internal feedback , Malaya Journal of Matematik: Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.