Some vector-valued statistical convergent sequence spaces

Downloads

DOI:

https://doi.org/10.26637/mjm302/004

Abstract

In the present paper we introduce some vector-valued statistical convergent sequence spaces defined by a sequence of modulus functions associated with multiplier sequences and we also make an effort to study some topological properties and inclusion relation between these spaces.

Keywords:

Modulus function, paranorm space, difference sequence space, statistical convergence

Mathematics Subject Classification:

40A05, 46A45, 40C05
  • Kuldip Raj School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India.
  • Suruchi Pandoh School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India.
  • Pages: 161-167
  • Date Published: 01-04-2015
  • Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)

Altinok H., Altin Y., Isik M. The Sequence Space $B v_sigma(M, P, Q, S)$ On Seminormed Spaces, Indian J. Pure Appl. Math., 39 (2008), 49-58.

Colak R. On invariant sequence spaces, Erc. Univ. J. Sci., 5 (1989), 881-887.

Colak R. On certain sequence spaces and their Kothe-Toeplitz duals, Rend. Mat. Appl., Ser, 13 (1993), 27-39.

Et M., Colak R. On some generalized difference sequence spaces, Soochow J. Math., 21 (1995), $377-386$.

Connor J. S. A topological and functional analytic approach to statistical convergence, Appl. Numer. Harmonic Anal.,(1999), 403-413. DOI: https://doi.org/10.1007/978-1-4612-2236-1_23

Fast H. Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. DOI: https://doi.org/10.4064/cm-2-3-4-241-244

Fridy J. A. On the statistical convergence, Analysis, 5 (1985), 301-303. DOI: https://doi.org/10.1524/anly.1985.5.4.301

Goes G., Goes S. Sequence of bounded variation and sequences of Fourier coefficients, Math. Zeit, 118 (1970), $93-102$. DOI: https://doi.org/10.1007/BF01110177

Gupta M. The generalized spaces $l^1(X)$ and $m_0(X)$, J. Math. Anal. Appl., 76 (1980), 357-366. DOI: https://doi.org/10.1016/0022-247X(80)90153-5

Isik M. On statistical convergence of generalized difference sequence spaces, Soochow J. Math., 30 (2004), $197-$ 205.

Kamthan P. K. Bases in a certain class of Frechet spaces, Tamkang J. Math., 7 (1976), 41-49.

Kizmaz H. On certain sequence spaces, Cand. Math. Bull., 24 (1981), 169-176. DOI: https://doi.org/10.4153/CMB-1981-027-5

Kolk E. The statistical convergence in Banach spaces, Acta. Comment. Univ. Tartu, 928 (1991), 41-52.

Leonard I. E. Banach sequence spaces, J. Math. Anal. Appl., 54 (1976), 245-265. DOI: https://doi.org/10.1016/0022-247X(76)90248-1

Maddox I. J. Statistical convergence in a locally convex space, Math. Proc. Cambridge Phil. Soc., 104 (1988), 141-145. DOI: https://doi.org/10.1017/S0305004100065312

Mursaleen M. A-statistical convergence, Math. Slovaca, 50 (2000), 111-115.

Ratha A., Srivastava P. D. On some vector valued sequence spaces $mathcal{L}_{infty}^{(p)}left(E_k, Lambdaright)$, Ganita, 47 (1996), 1-12.

Raj K., Sharma S. K. Difference sequence spaces defined by sequence of modulus function, Proyecciones, 30 (2011), 189-199.

Raj K., Sharma S. K. Some difference sequence spaces defined by sequence of modulus function, Int. J. Math. Archive, 2 (2011), pp. 236-240. DOI: https://doi.org/10.4067/S0716-09172011000200005

Salat T. On statictical convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.

Savas E. Strong almost convergence and almost $lambda$-statistical convergence, Hokkaido Math. J., 29 (2000), 531566. DOI: https://doi.org/10.14492/hokmj/1350912989

Savas E. On some generalized sequence spaces defined by a modulus, Indian J. pure Appl. Math., 30 (1999), $459-464$.

Schoenberg I. J. The integrability of certain functions and related summability methods, Amer. Math. Monthly, $66(1959), 361-375$ DOI: https://doi.org/10.2307/2308747

Srivastava J. K., Srivastava B. K. Generalized sequence space $c_0(X, lambda, p)$, Indian J. pure Appl. Math., 27 (1996), 73-84.

Tripathy B. C., Sen M. On generalized statistically convergent sequences, Indian J. Pure Appl. Math., 32 (2001), 1689-1694.

Tripathy B. C., Sen M. Vector valued paranormed bounded and null sequence spaces associated with multiplier sequences, Soochow J. Math., 29 (2003), 379-391.

Tripathy B. C., Mahanta S. On a class of vector valued sequences associated with multiplier sequences, Acta Math. Appl. Sinica, 20 (2004), 487-494. DOI: https://doi.org/10.1007/s10255-004-0186-7

Wilansky A. Summability through Functional Analysis, North- Holland Math. Stud. (1984).

  • NA

Metrics

Metrics Loading ...

Published

01-04-2015

How to Cite

Kuldip Raj, and Suruchi Pandoh. “Some Vector-Valued Statistical Convergent Sequence Spaces”. Malaya Journal of Matematik, vol. 3, no. 02, Apr. 2015, pp. 161-7, doi:10.26637/mjm302/004.