Global nonexistence of solutions for a system of viscoelastic wave equations with weak damping terms
Downloads
DOI:
https://doi.org/10.26637/mjm302/005Abstract
This paper deals with the initial boundary value problem for the viscoelastic wave equations
$$
\left\{\begin{array}{c}
u_{t t}-\Delta u+\int_0^t g_1(t-\tau) \Delta u(\tau) d \tau+u_t=f_1(u, v), \\
v_{t t}-\Delta v+\int_0^t g_2(t-\tau) \Delta v(\tau) d \tau+v_t=f_2(u, v)
\end{array}\right.
$$
in a bounded domain. We obtain the global nonexistence of solutions by applying a lemma due to Y. Zhou [Global existence and nonexistence for a nonliear wave equation with damping and source terms, Math. Nacht, 278 (2005) 1341-1358].
Keywords:
Global nonexistence, viscoelastic wave equationMathematics Subject Classification:
35G44- Pages: 168-174
- Date Published: 01-04-2015
- Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Academic Press, 2003.
K. Agre, M.A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differential Integral Equations, 19 (11), 1235-1270 (2006). DOI: https://doi.org/10.57262/die/1356050301
V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source term, J. Differ. Equations, 109, 295-308 (1994). DOI: https://doi.org/10.1006/jdeq.1994.1051
X. Han, M. Wang, Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equations with damping and source, Nonlinear Anal., 7, 5427-5450 (2009). DOI: https://doi.org/10.1016/j.na.2009.04.031
M. Kafini, S.A. Messaoudi, A blow up result in a Cauchy viscoelastic problem, Appl. Math. Lett., 21 (6), $549-553(2008)$ DOI: https://doi.org/10.1016/j.aml.2007.07.004
H.A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t}=A u+F(u)$, Trans. Amer. Math. Soc., 192, 1-21 (1974). DOI: https://doi.org/10.1090/S0002-9947-1974-0344697-2
H.A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5,138-146 (1974). DOI: https://doi.org/10.1137/0505015
S.A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., $260,58-66(2003)$ DOI: https://doi.org/10.1002/mana.200310104
S.A. Messaoudi, Blow up of solutions with positive initial energy in a nonlinear viscoelastic wave equations, J. Math. Anal. Appl., 320, 902-915 (2006). DOI: https://doi.org/10.1016/j.jmaa.2005.07.022
S.A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr., 231, 105-111 (2001). DOI: https://doi.org/10.1002/1522-2616(200111)231:1<105::AID-MANA105>3.0.CO;2-I
S.A. Messaoudi, Global nonexistence in a nonlinearly damped wave equation, Appl. Anal., 80, 269-277 $(2001)$. DOI: https://doi.org/10.1080/00036810108840993
S.A. Messaoudi, B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365, 277-287 (2010). DOI: https://doi.org/10.1016/j.jmaa.2009.10.050
J.E. Munoz Rivera, M. Naso, E. Vuk, Asymptotic behavior of the energy for electromagnetic system with memory, Math. Methods Appl. Sci., 25 (7), 819-841 (2004). DOI: https://doi.org/10.1002/mma.473
B. Said-Houari, Global existence and decay of solutions of a nonlinear system of wave equations, Appl. Anal., 91 (3), 475-489 (2012). DOI: https://doi.org/10.1080/00036811.2010.549475
B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differential Integral Equations, 23, 79-92 (2010). DOI: https://doi.org/10.57262/die/1356019388
B. Said-Houari, S.A. Messaoudi, A. Guesmia, General decay of solutions of a nonlinear system of viscoelastic wave equations, NoDEA- Nonlinear Diff., 18, 659-684 (2011). DOI: https://doi.org/10.1007/s00030-011-0112-7
Y. Wang, A global nonexistence theorem for viscoelastic equations with arbitrary positive initial energy, Appl. Math. Lett., 22, 1394-1400 (2009). DOI: https://doi.org/10.1016/j.aml.2009.01.052
Y. Zhou, Global existence and nonexistence for a nonliear wave equation with damping and source terms, Math. Nacht, 278, 1341-1358 (2005). DOI: https://doi.org/10.1002/mana.200310310
- NA
Similar Articles
- A. Mohamed Ismayil, S. Ismail Mohideen, Mixed domination in an M-strong fuzzy graph , Malaya Journal of Matematik: Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.