A note on Civin-Yood Theorem for locally C∗C∗-algebras
Downloads
DOI:
https://doi.org/10.26637/mjm302/007Abstract
In the present note we establish Civin-Yood Theorem for locally C∗C∗-algebras, i.e. we show that if AA be a locally C∗C∗-algebra, and JJ be its closed Jordan ideal, then JJ is as well a closed two-sided ∗∗-ideals in AA.
Keywords:
C∗C∗ -algebras , locally C∗C∗ -algebras, projective limit of projective family of C∗C∗ -algebrasMathematics Subject Classification:
46K05, 46K10- Pages: 182-186
- Date Published: 01-04-2015
- Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
Arens, R., A generalization of normed rings. (English) Pacific J. Math., Vol. 2 (1952), pp. 455-471. DOI: https://doi.org/10.2140/pjm.1952.2.455
Civin, P.; Yood, B. Lie and Jordan structures in Banach algebras, (English) Pacific J. Math. Vol. 15 (1965), pp. $775-797$ DOI: https://doi.org/10.2140/pjm.1965.15.775
Dixmier, J, C -aJgcbras, (English) Translated from the French by Francis Jellett. North-Holland Mathematical Library, Vol. 15. North-Holland Publishing Co, Amsterdam-New York-Oxford (1977), 492 PP.
Fragoulopoulou, M., Topological algebras mith involution. (English) North-Holland Mathematics Studies, Vol. 200, Elsevier Science B.V., Amsterdam (2005), $495 mathrm{pp}$. Mathematics, Vol. 21. Pitman (Advanced Publishing Program), Boston, MA (1984), 183 pp.
Inoue, A-y Locally C-algebra. (English), Mem. Fac. Sci. Kyushu Univ. Ser. A, Vol. 25 (1971), pp. $197-235$. DOI: https://doi.org/10.2206/kyushumfs.25.197
Kelley. J. L. Generul topology. (English) Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27. Springer-Verlag, New York-Berlin (1975), 298 PP
Michael, E.A., Locally multiplicatively-conoex topological algebnas (English) Mem. Amex. Math. Soc, No. 11 $(1952), 79 mathrm{pp}$ DOI: https://doi.org/10.1090/memo/0011
Pedersen, G.K., $C^*$-algebras and their automorphism groups. (English) London Mathematical Society Monographs, Vol. 14. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York (1979), 416pp
Schmūdgen, K, Uber LMC*-Algebnen. (German) Math. Nachr. Vol. 68 (1975), pP. 167-182. DOI: https://doi.org/10.1002/mana.19750680113
Trèves, F-, Topological vector spaces: Distributions and Kernels. (English), New York-London: Academic Press (1967), 565pp.
- NA
Similar Articles
- Erhan Pişkin, Global nonexistence of solutions for a system of viscoelastic wave equations with weak damping terms , Malaya Journal of Matematik: Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.