On local attractivity of nonlinear functional integral equations via measures of noncompactness

Downloads

DOI:

https://doi.org/10.26637/mjm302/009

Abstract

In this paper, we prove the local attractivity of solutions for a certain nonlinear Volterra type functional integral equations. We rely on a measure theoretic fixed point theorem of Dhage (2008) for nonlinear \(D\)-set-contraction in Banach spaces. Finally, we furnish an example to validate all the hypotheses of our main result and to ensure the existence and ultimate attractivity of solutions for a numerical nonlinear functional integral equation.

Keywords:

Measure of noncompactness, fixed point theorem, functional integral equation, attractivity of solutions

Mathematics Subject Classification:

45G10, 45G99
  • Pages: 191-201
  • Date Published: 01-04-2015
  • Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)

A. Aghajani, ]. Banas and N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, BuIl. Belg. Math. Soc. Simon Stewin 20 (2013), 345-358. DOI: https://doi.org/10.36045/bbms/1369316549

R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodhina and B. N. Sadovskii, Measures of nonconpactness and Condensatg Opentors, Bitkhauser Verlag, 1992. DOI: https://doi.org/10.1007/978-3-0348-5727-7

J. Banas and K. Goebel, Measares of Noncouipactness in Banach Spaces, LNPAM Vol. 60, Marcel Dekker, New York 1980.

J. Banas and B. Rzepka, An application of measures of noncompactress in the study of asymptotic stability, Appl. Math. Leff. 16 (2003), 1-6. DOI: https://doi.org/10.1016/S0893-9659(02)00136-2

G. Darbo, Punti uniti i transformazion a condominio non compatto, Rend. Sem. Math. Unia. Padoxa 4 $(1995), 84-92$.

K. Deimling, Ordinary Differerfial Equatious in Banach Spoces, LNM Springer Verlag, 1977. DOI: https://doi.org/10.1007/BFb0091636

B.C. Dhage, A nonlinear altemative with applications to nonlinear perturbed differential equations, Nonkiner Studies 13 (4) (2006), 343-354.

BC. Dhage, Asymptotic stability of the solution of certain nonlinear functional integral equations via measures of noncompactness, Comb. Appl. Nonlinar Anal. 15 (2008), no, 2, 89-101.

B.C. Dhage, Attractivity and positivity results for nonlinear functional integral equations via measures of noncompactness, Differ. Eigu. Appl. 2 (1) (2010), 299-318. DOI: https://doi.org/10.7153/dea-02-20

B.C. Dhage, Partially condensing mappings in ordered normed linear spaces and applications to functional integral equations, Tankang J, Math, 45 (2014), 397-426. DOI: https://doi.org/10.5556/j.tkjm.45.2014.1512

B.C. Dhage, Global attractivity results for comparable solutions of norlinear hybrid fractional integral equations, Differ. Egu. Appl. 6 (2014), 165-186. DOI: https://doi.org/10.7153/dea-06-08

B.C. Dhage, V. Lakshmikatham, On global existence and attrctivity results for nonlinear functional integral equations, Norlinen Analysis 72 (2010), 2219-2227, DOI: https://doi.org/10.1016/j.na.2009.10.021

B. C. Dhage and S. K.Ntouyas, Existence results for nonlinear functional integral equations via a fixed point theorem of Krasnoselskii-Schaefer type, Nonlinen Studhes 9 (3) (2002), 307-317.

M.A. Krasnoselskii, Topological Methods in The Theory of Nonjinear Integral Egantions, Pergamon Press, New York, 1964

D. O'Regan and M. Meehan, Existence Thevry for Nonlinew Integnil and Integno-differentrial Equithous, Kluwer Academic Dordrechet 1998. DOI: https://doi.org/10.1007/978-94-011-4992-1

M. Vath, Voliena and Jntegnal Equations of Vector Functions, PAM, Marcel Dekker, New York 2000.

E. Zeidler, Nonlinen Fuoctional Analysis and Jts Applientians, Part I, Fixed Point Theory, Springer Verlagr 1985.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2015

How to Cite

B. C. Dhage, S. B. Dhage, S. K. Ntouyas, and H. K. Pathak. “On Local Attractivity of Nonlinear Functional Integral Equations via Measures of Noncompactness”. Malaya Journal of Matematik, vol. 3, no. 02, Apr. 2015, pp. 191-0, doi:10.26637/mjm302/009.