Remarks on rg-compact, gpr-compact and gpr-connected spaces
Downloads
DOI:
https://doi.org/10.26637/mjm302/011Abstract
We give some characterizations of rg-compact, gpr-compact and gpr-connected spaces by utilizing rg-open, gpr-open and gpr-closed sets. The paper is closely related to [A.M.Al-Shibani, rg-compact spaces and rg-connected spaces, Mathematica Pannonica, 17/1 (2006), 61-68], [Y.Gnanambal and K.Balachandran, On gpr-continuous functions in topological spaces,Indian .J.Pure appl.Math., 30(6) (1999),581-593] and [P.Gnanachandra et. al., Ultra Scientist, 24(1) A (2012), 185-191]
Keywords:
rg-closed, rg-open, gpr-closed, gpr-open, gpr-compact, rg-compact, gpr-connectedMathematics Subject Classification:
54C08- Pages: 207-210
- Date Published: 01-04-2015
- Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
AL-SHBBANI, rg-compact spines and rg-conutected spaces, Mathematica Pannonica, 17(1) (2006), 61-68.
I.AROCKIA RANI AND K.BALACHANDKAN, On neguler generalized continuous mapts in fopological stoces, Kyungpook Math. J. $37(1997), 305-314$.
PGGANACHANDRA AND P.THANGAVELU, Remarks on rg-closure, gW-closare oprators and gyr-separation arioms, Ultra Scientist, 24(1)A (2012),185-191.
PGNANACHANDEA, P.THANGAVELU AND L. VEl.MURUGAN, Role of singietons in topology, International journal of Advanced Scientific and Technical Research, 4(2)(2012), 122-131.
Y.GNANAMBAL. On generelized pre-nguder closed sets in fopological spuces, Indian ]- Pure appl. Math., 28(3) $(1997), 351-360$
Y.GNANambal, On gpr-contimious functions in fopological spnees, Indian. J. Pure appl. Math., 30(6) (1999), 581-593.
A.S.M.ASHHOUR, M.E.AbD EL-MonsEf AND S.N.EL-DEEb, On Precontinhous and Weak precontekious Moppinge, Proc.Math.Phys.Soc.Egypt $53(1962), 47-53$.
N.PALANIAPPAN AND K.CHANDRASEKHARA RAO, Regular gmimalizd dosed sets, Kyungpook: Mathematical Joumal, 33(2) (1993), 211-219.
M.H.STONE, Applications of the theory of Boolen rings to the genemil topology. Trans. A.M.S., 41 (1937), $375-481$. DOI: https://doi.org/10.1090/S0002-9947-1937-1501905-7
- The author gratefully acknowledge that this research was partially supported by the University Grants Commission, New Delhi under the Minor Research Grant MRP-5250/14.
Similar Articles
- B. C. Dhage, S. B. Dhage, S. K. Ntouyas, H. K. Pathak , On local attractivity of nonlinear functional integral equations via measures of noncompactness , Malaya Journal of Matematik: Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
- Bapurao C. Dhage, Nonlinear \(D\)-set contraction mappings in partially ordered normed linear spaces and applications to functional hybrid integral equations , Malaya Journal of Matematik: Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
- Kavita Sakure, Samir Dashputre, Nonlinear functional integral equation: Existence, global attractivity and positivity of solutions , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.