Oscillation criteria of third order nonlinear neutral difference equations
Downloads
DOI:
https://doi.org/10.26637/mjm302/013Abstract
In this paper we consider the third order nonlinear neutral difference equation of the form
$$
\Delta\left(r_n\left(\Delta^2\left(x_n \pm p_n x_{\sigma(n)}\right)\right)^\alpha\right)+f\left(n, x_{\tau(n)}\right)=0,
$$
we establish some sufficient conditions which ensure that every solution of this equation are either oscillatory or converges to zero. Examples are provided to illustrate the main results.
Keywords:
oscillation, neutral difference equationsMathematics Subject Classification:
39A10- Pages: 216-223
- Date Published: 01-04-2015
- Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
R.P.Agarwal, M.Bohner, S.R.Grace and D.ORegan, Discrete Oscillation Theory, Himbruv Pwh. Corp., New York, 2005. DOI: https://doi.org/10.1155/9789775945198
R.P.Agarwal and S.R.Grace, Oscillation of certain third order difference equations, Cowput. Math. Apgl, 42(2001), 379-384 DOI: https://doi.org/10.1016/S0898-1221(01)00162-6
G.Ayyappan & Obcillation Criteria-
R.P.Agarwal, S.R.Grace and D.O'Regan, On the oscillation of oertain third order difference equations, Adu Diff, Egmos, 3(2005), 345-367. DOI: https://doi.org/10.1155/ADE.2005.345
R.P.Agarwal, S.R.Grace and PJ.Y.Wong, On the oscillation of third order nonlinear difference equations, I.Appl.Math Cowput, 32 (2010), 189-203. DOI: https://doi.org/10.1007/s12190-009-0243-8
M.F.Aktas, A.Tiryaki and ZZafer, Oscillation of third order nonlinear delay difference equations, Tirk J.Math, 36(2012), 422-436. DOI: https://doi.org/10.3906/mat-1010-67
S.R.Grace, R.P.Agarwal and M.F.Aktas, Oscillation criteria for third order nonlinear difference equations, Fesciculi Mathematici, (2009), 39-51.
S.R.Grace, R.PAgarwal and J.RGtaef, Oscillation criteria for certain third order nonlinear difference equations, Appl. Anal. Discrete Math., 3(2009), 27-38. DOI: https://doi.org/10.2298/AADM0901027G
S.HSakee, Oscillation and asymptotic behavior of third order nonlinear neutral delay difference equations, Dyw, Sys, Appl, 15(2006), S49-568.
S.HSaker, JO.Alzbut and A.Mukheime, On the ascillatory behavior for a certain third order nonlinear delay difference equations, Elic.].Qual, Tha Diff. Equs, 67(2010), 1-16. DOI: https://doi.org/10.14232/ejqtde.2010.1.67
B.Smith, Oscillatory and asymptotic behavior in certain third order difference equations, Rocky Mount. J. Math., 17(1957), 597-606. DOI: https://doi.org/10.1216/RMJ-1987-17-3-597
B.Smith and Jr.W.E.Taylor, Nonlinear third order difference equation: oscillatory and asymptotic behavior, Tambiong J.Mefh, 19(1985), 91-95.
E.Thandapani and K.Mahalingam, Osciilatory properties of third order neutral delay difference equations, Demons. Math., 35(2),2002), 325-336. DOI: https://doi.org/10.1515/dema-2002-0213
E.Thandapani and SSelvarangam, Oscillation results for third order halflinear neutral difference equations, Bull. Math. Ami. Apy, 4(2012), 91-102. DOI: https://doi.org/10.1186/1687-1847-2012-4
E.Thandapani and S.Selvarangam, Oscillation of third order halflinear neutral difference equations, Math. Eohemica, (appear).
E.Thandapani, M.Vijaya and T.Li, On the oscillation of third order halflinear neutral type difference equations, Elec. D.Qual. Thro. Diff. Egrs., 76(2011), 1-13. DOI: https://doi.org/10.14232/ejqtde.2011.1.76
- NA
Similar Articles
- P. Gnanachandra, Remarks on rg-compact, gpr-compact and gpr-connected spaces , Malaya Journal of Matematik: Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.