Oscillation criteria of third order nonlinear neutral difference equations

Downloads

DOI:

https://doi.org/10.26637/mjm302/013

Abstract

In this paper we consider the third order nonlinear neutral difference equation of the form
$$
\Delta\left(r_n\left(\Delta^2\left(x_n \pm p_n x_{\sigma(n)}\right)\right)^\alpha\right)+f\left(n, x_{\tau(n)}\right)=0,
$$
we establish some sufficient conditions which ensure that every solution of this equation are either oscillatory or converges to zero. Examples are provided to illustrate the main results.

Keywords:

oscillation, neutral difference equations

Mathematics Subject Classification:

39A10
  • Pages: 216-223
  • Date Published: 01-04-2015
  • Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)

R.P.Agarwal, M.Bohner, S.R.Grace and D.ORegan, Discrete Oscillation Theory, Himbruv Pwh. Corp., New York, 2005. DOI: https://doi.org/10.1155/9789775945198

R.P.Agarwal and S.R.Grace, Oscillation of certain third order difference equations, Cowput. Math. Apgl, 42(2001), 379-384 DOI: https://doi.org/10.1016/S0898-1221(01)00162-6

G.Ayyappan & Obcillation Criteria-

R.P.Agarwal, S.R.Grace and D.O'Regan, On the oscillation of oertain third order difference equations, Adu Diff, Egmos, 3(2005), 345-367. DOI: https://doi.org/10.1155/ADE.2005.345

R.P.Agarwal, S.R.Grace and PJ.Y.Wong, On the oscillation of third order nonlinear difference equations, I.Appl.Math Cowput, 32 (2010), 189-203. DOI: https://doi.org/10.1007/s12190-009-0243-8

M.F.Aktas, A.Tiryaki and ZZafer, Oscillation of third order nonlinear delay difference equations, Tirk J.Math, 36(2012), 422-436. DOI: https://doi.org/10.3906/mat-1010-67

S.R.Grace, R.P.Agarwal and M.F.Aktas, Oscillation criteria for third order nonlinear difference equations, Fesciculi Mathematici, (2009), 39-51.

S.R.Grace, R.PAgarwal and J.RGtaef, Oscillation criteria for certain third order nonlinear difference equations, Appl. Anal. Discrete Math., 3(2009), 27-38. DOI: https://doi.org/10.2298/AADM0901027G

S.HSakee, Oscillation and asymptotic behavior of third order nonlinear neutral delay difference equations, Dyw, Sys, Appl, 15(2006), S49-568.

S.HSaker, JO.Alzbut and A.Mukheime, On the ascillatory behavior for a certain third order nonlinear delay difference equations, Elic.].Qual, Tha Diff. Equs, 67(2010), 1-16. DOI: https://doi.org/10.14232/ejqtde.2010.1.67

B.Smith, Oscillatory and asymptotic behavior in certain third order difference equations, Rocky Mount. J. Math., 17(1957), 597-606. DOI: https://doi.org/10.1216/RMJ-1987-17-3-597

B.Smith and Jr.W.E.Taylor, Nonlinear third order difference equation: oscillatory and asymptotic behavior, Tambiong J.Mefh, 19(1985), 91-95.

E.Thandapani and K.Mahalingam, Osciilatory properties of third order neutral delay difference equations, Demons. Math., 35(2),2002), 325-336. DOI: https://doi.org/10.1515/dema-2002-0213

E.Thandapani and SSelvarangam, Oscillation results for third order halflinear neutral difference equations, Bull. Math. Ami. Apy, 4(2012), 91-102. DOI: https://doi.org/10.1186/1687-1847-2012-4

E.Thandapani and S.Selvarangam, Oscillation of third order halflinear neutral difference equations, Math. Eohemica, (appear).

E.Thandapani, M.Vijaya and T.Li, On the oscillation of third order halflinear neutral type difference equations, Elec. D.Qual. Thro. Diff. Egrs., 76(2011), 1-13. DOI: https://doi.org/10.14232/ejqtde.2011.1.76

  • NA

Metrics

Metrics Loading ...

Published

01-04-2015

How to Cite

G.Ayyappan. “Oscillation Criteria of Third Order Nonlinear Neutral Difference Equations”. Malaya Journal of Matematik, vol. 3, no. 02, Apr. 2015, pp. 216-23, doi:10.26637/mjm302/013.