Hermite Hadamard-Fejer type inequalities for quasi convex functions via fractional integrals

Downloads

DOI:

https://doi.org/10.26637/mjm303/003

Abstract

In this paper, Hermite-Hadamard-Fejer type inequalities for quasi-convex via fractional integrals are obtained.

Keywords:

Hermite-Hadamard inequality, Hermite-Hadamard-Fejer inequality, quasi convex functions

Mathematics Subject Classification:

26D07, 26D15
  • Erhan SET Department of Mathematics, Faculty of Arts and Sciences, Ordu University, 52200, Ordu, Turkey.
  • İmdat İşcan Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey.
  • Seda Paça Department of Mathematics, Faculty of Arts and Sciences, Ordu University, 52200, Ordu, Turkey.
  • Pages: 241-249
  • Date Published: 01-07-2015
  • Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)

S. S. Drogamir and C.E.M. Pearce, Selected Topics on Hermite- Hadamard Inequalities and Applications, RGMIAA Monographs, Victoria Universty, 2000.

J. Hadamard, Etude sur les proprietes des functions entieres et en particulier d'une fonction consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.

L. Fejer, Uberdie Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad., Wiss, 24 (1906), 369-390, (in Hungarian).

M. Z. Sarıkaya, E. Set, H. Yaldız and N.Başak, Hermite Hadamards inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57(9)(2013), 2403-2407. DOI: https://doi.org/10.1016/j.mcm.2011.12.048

D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Sci. Ser., 34(2007), 82-87.

A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integral and series. In: Elementary Functions, vol. 1. Nauka, Moscow, 1981

J. Wang, C. Zhu and Y. Zhou, New generalized Hermite-Hadamard-type inequalitiesand applications to special means, J. Inequal. Appl., 2013(325) (2013), 15 pages. DOI: https://doi.org/10.1186/1029-242X-2013-325

M. E. Özdemir and Çetin Yıldız, The Hadamard's inequality for quasi-convex functions via fractional integrals, Annals of University of Craiova, Math. and Computer Sci. Ser., 40 (2)(2013), 167-173.

E. Set, İ. İşcan, M. E. Özdemir and M. Z. Sarıyaka, On new Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, Applied Mathematics and Computation, 259(2015), 875-881. DOI: https://doi.org/10.1016/j.amc.2015.03.030

J. E. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc, Boston/London, 1992.

İ. İşcan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, arXiv:1404.7722v1.

  • NA

Metrics

PDF views
76
Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202613
|

Published

01-07-2015

How to Cite

Erhan SET, İmdat İşcan, and Seda Paça. “Hermite Hadamard-Fejer Type Inequalities for Quasi Convex Functions via Fractional Integrals”. Malaya Journal of Matematik, vol. 3, no. 03, July 2015, pp. 241-9, doi:10.26637/mjm303/003.
Pshtiwan Othman Mohammed (2016)
Some integral inequalities of fractional quantum type. Malaya Journal of Matematik, 4(01), 93.
10.26637/mjm401/012
Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh (2023)
A Comprehensive Review on the Fejér-Type Inequality Pertaining to Fractional Integral Operators. Axioms, 12(7), 719.
10.3390/axioms12070719