Hermite Hadamard-Fejer type inequalities for quasi convex functions via fractional integrals
Downloads
DOI:
https://doi.org/10.26637/mjm303/003Abstract
In this paper, Hermite-Hadamard-Fejer type inequalities for quasi-convex via fractional integrals are obtained.
Keywords:
Hermite-Hadamard inequality, Hermite-Hadamard-Fejer inequality, quasi convex functionsMathematics Subject Classification:
26D07, 26D15- Pages: 241-249
- Date Published: 01-07-2015
- Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)
S. S. Drogamir and C.E.M. Pearce, Selected Topics on Hermite- Hadamard Inequalities and Applications, RGMIAA Monographs, Victoria Universty, 2000.
J. Hadamard, Etude sur les proprietes des functions entieres et en particulier d'une fonction consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
L. Fejer, Uberdie Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad., Wiss, 24 (1906), 369-390, (in Hungarian).
M. Z. Sarıkaya, E. Set, H. Yaldız and N.Başak, Hermite Hadamards inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57(9)(2013), 2403-2407. DOI: https://doi.org/10.1016/j.mcm.2011.12.048
D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Sci. Ser., 34(2007), 82-87.
A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integral and series. In: Elementary Functions, vol. 1. Nauka, Moscow, 1981
J. Wang, C. Zhu and Y. Zhou, New generalized Hermite-Hadamard-type inequalitiesand applications to special means, J. Inequal. Appl., 2013(325) (2013), 15 pages. DOI: https://doi.org/10.1186/1029-242X-2013-325
M. E. Özdemir and Çetin Yıldız, The Hadamard's inequality for quasi-convex functions via fractional integrals, Annals of University of Craiova, Math. and Computer Sci. Ser., 40 (2)(2013), 167-173.
E. Set, İ. İşcan, M. E. Özdemir and M. Z. Sarıyaka, On new Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, Applied Mathematics and Computation, 259(2015), 875-881. DOI: https://doi.org/10.1016/j.amc.2015.03.030
J. E. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc, Boston/London, 1992.
İ. İşcan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, arXiv:1404.7722v1.
- NA
Similar Articles
- Debasish Das, Pritikanta Patra, Rajani Ballav Dash, An adaptive integration scheme using a mixed quadrature of three different quadrature rules , Malaya Journal of Matematik: Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.