Solution and stability of system of quartic functional equations
Downloads
DOI:
https://doi.org/10.26637/mjm303/004Abstract
In this paper, the authors introduced and investigated the general solution of system of quartic functional equations
$$
\begin{aligned}
& f(x+y+z)+f(x+y-z)+f(x-y+z)+f(x-y-z) \\
& =2[f(x+y)+f(x-y)+f(x+z)+f(x-z)+f(y+z)+f(y-z)] \\
& -4[f(x)+f(y)+f(z)] \\
& f(3 x+2 y+z)+f(3 x+2 y-z)+f(3 x-2 y+z)+f(3 x-2 y-z) \\
& =72[f(x+y)+f(x-y)]+18[f(x+z)+f(x-z)]\\&+8[f(y+z)+f(y-z)]+144 f(x)-96 f(y)-48 f(z) \\
& f(x+2 y+3 z)+f(x+2 y-3 z)+f(x-2 y+3 z)+f(x-2 y-3 z) \\
& =8[f(x+y)+f(x-y)]+18[f(x+z)+f(x-z)]\\&+72[f(y+z)+f(y-z)]-48 f(x)-96 f(y)+144 f(z)
\end{aligned}
$$
Its generalized Hyers-Ulam stability using Hyers direct method and fixed point method are discussed. Counter examples for non stable cases are also given.
Keywords:
Quartic functional equation, Generalized Hyers-Ulam stability, fixed pointMathematics Subject Classification:
39B52, 39B72, 39B82- Pages: 250-267
- Date Published: 01-07-2015
- Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989. DOI: https://doi.org/10.1017/CBO9781139086578
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. DOI: https://doi.org/10.2969/jmsj/00210064
M. Arunkumar, Three Dimensional Quartic Functional Equation In Fuzzy Normed Spaces, Far East Journal of Applied Mathematics, 41(2), (2010), 88-94.
M. Arunkumar, K. Ravi, M.J. Rassias, Stability of a Quartic and Orthogonally Quartic functional equation, Bulletin of Mathematical Analysis and Application, 3(3), 2011, 13-24.
M. Arunkumar, Matina J. Rassias, Yanhui Zhang, Ulam - Hyers stability of a 2-variable AC - mixed type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier (JMMF), 1 (3), $2012,10-26$.
S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. DOI: https://doi.org/10.1142/4875
M. Eshaghi Gordji, H. Khodaei, J.M. Rassias, Fixed point methods for the stability of general quadratic functional equation, Fixed Point Theory 12 (2011), no. 1, 71-82. DOI: https://doi.org/10.1155/2011/454093
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211
D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224. DOI: https://doi.org/10.1073/pnas.27.4.222
D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998. DOI: https://doi.org/10.1007/978-1-4612-1790-9
S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009 DOI: https://doi.org/10.1007/978-0-387-89492-8
S. H. Lee, S. M. Im and I. S. Hwang, Quartic functional equations, J. Math. Anal. Appl., 307, (2005), $387-394$. DOI: https://doi.org/10.1016/j.jmaa.2004.12.062
B.Margoils, J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull.Amer. Math. Soc. 12674 (1968), 305-309. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0
S. Murthy, M. Arunkumar, G. Ganapathy, Perturbation of n-dimensional quadratic functional equation: A fixed point approach, International Journal of Advanced Computer Research (IJACR), Volume-3, Number3, Issue-11 September-2013, 271-276.
A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl., 340(1), (2008), 569-574. DOI: https://doi.org/10.1016/j.jmaa.2007.08.048
C. G. Park On the stability of the orthogonally quartic functional, Bull. Iranian Math. Soc., Vol 3(1), (2005), $63-70$.
J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130. DOI: https://doi.org/10.1016/0022-1236(82)90048-9
J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Mathematicki., 34(54) no.2, (1999), 243-252.
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003. DOI: https://doi.org/10.1007/978-94-017-0225-6
K.Ravi and M.Arunkumar, Hyers-Ulam-Rassias of a Quartic Functional Equation, International Journal of pure and Applied Mathematics, Volume 34, No.2, 2007, 247-260.
K.Ravi and M.Arunkumar, On a n-dimensional additive Functional Equation with fixed point Alternative, Proceedings of International Conference on Mathematical Sciences 2007, Malaysia.
K.Ravi and M.Arunkumar, On a General Solution of a Quartic functional Equation, J. of Combinatorics, Information and System Sciences, Vol. 33, Nos. 3-4 (2008), 373-386.
K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
P. K. Sahoo and J. K. Chung, On the general solution of a quartic functional equation, Bull. Korean. Math. Soc., 40(4) (2003), 565-576. DOI: https://doi.org/10.4134/BKMS.2003.40.4.565
E. Thandapani, K. Ravi and M. Arunkumar, On The Solution of the Generalized Quartic Functional Equation, Far East Journal of Applied Mathematics, Vol 24, No. 3, 2006, 297-312.
S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.
- NA
Similar Articles
- S. K. Vaidya, N. J. Kothari, Line gracefulness in the context of switching of a vertex , Malaya Journal of Matematik: Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.