On \(\tilde{\mu}\)-open sets in generalized topological spaces
Downloads
DOI:
https://doi.org/10.26637/mjm303/005Abstract
In this paper, we introduce the notion of \(\tilde{\mu}\)-open sets in generalized topological spaces. Further, we introduce the notions of interior, closure, boundary, exterior and study some of their properties. In addition, we introduce the concepts of \(\tilde{\mu}-T_i\left(i=0, \frac{1}{2}, 1,2\right)\) spaces are characterized them using \(\tilde{\mu}\)-open and \(\tilde{\mu}\)-closed sets.
Keywords:
$\tilde{\mu}$-closed, \(\tilde{\mu}\)-open, \(\tilde{\mu}\)-closedMathematics Subject Classification:
34G20- Pages: 268-276
- Date Published: 01-07-2015
- Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)
C. Boonpok, $zeta_mu$-Sets in generalized topological spaces, Acta Math. Hunger., 134 (3) (2012), 269 - 285. DOI: https://doi.org/10.1007/s10474-011-0106-2
A. Csaszar, Generalized open sets, Acta Math. Hunger., 75 (1997), 65 - 87. DOI: https://doi.org/10.1023/A:1006582718102
A. Csaszar, On the $gamma$-interior and $gamma$-closure of a set, Acta Math. Hungar., 80 (1998), 89 - 93. DOI: https://doi.org/10.1023/A:1006572725660
A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351 - 357. DOI: https://doi.org/10.1023/A:1019713018007
A. Csaszar, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest., 47 (2004), 9196.
A. Csaszar, Separation axioms for generalized topologies, Acta Math. Hungar., 104 (1-2) (2004), 63 - 69. DOI: https://doi.org/10.1023/B:AMHU.0000034362.97008.c6
A. Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar., 105 (2005), 53 - 66. DOI: https://doi.org/10.1007/s10474-005-0005-5
A. Csaszar, Further remarks on the formula for $gamma$-interior, Acta Math. Hungar., 113 (2006), 325 - 332. DOI: https://doi.org/10.1007/s10474-006-0109-6
A. Csaszar, Modificatons of generalized topologies via hereditary classes, Acta Math. Hungar., 115 (2007), 29 36. DOI: https://doi.org/10.1007/s10474-006-0531-9
A. Csaszar, Remark on quasi topologies, Acta Math. Hungar., 119 (2008), 197 - 200. DOI: https://doi.org/10.1007/s10474-007-7023-4
A. Csaszar, $delta$ and $theta$-modifications of generalized topologies, Acta Math. Hungar., 120 (2008), 275 - 279. DOI: https://doi.org/10.1007/s10474-007-7136-9
R. Jamunarani and P. Jeyanthi, Regular sets in generalized topological spaces, Acta Math. Hungar., 135 (2012), $342-349$. DOI: https://doi.org/10.1007/s10474-011-0179-y
M. S. Sarasak, New separation axioms in generalized topological spaces, Acta Math. Hungar., 132 (3) (2011), $244-252$. DOI: https://doi.org/10.1007/s10474-010-0066-y
P. Sivagami, Remarks on $gamma$-interior, Acta Math. Hungar., 119 (2008), 81 - 94. DOI: https://doi.org/10.1007/s10474-007-7007-4
- NA
Similar Articles
- Erhan SET, İmdat İşcan, Seda Paça, Hermite Hadamard-Fejer type inequalities for quasi convex functions via fractional integrals , Malaya Journal of Matematik: Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.