On \(\tilde{\mu}\)-open sets in generalized topological spaces

Downloads

DOI:

https://doi.org/10.26637/mjm303/005

Abstract

In this paper, we introduce the notion of \(\tilde{\mu}\)-open sets in generalized topological spaces. Further, we introduce the notions of interior, closure, boundary, exterior and study some of their properties. In addition, we introduce the concepts of \(\tilde{\mu}-T_i\left(i=0, \frac{1}{2}, 1,2\right)\) spaces are characterized them using \(\tilde{\mu}\)-open and \(\tilde{\mu}\)-closed sets.

Keywords:

$\tilde{\mu}$-closed, \(\tilde{\mu}\)-open, \(\tilde{\mu}\)-closed

Mathematics Subject Classification:

34G20
  • D. Saravanakumar Department of Mathematics, SNS College of Engineering, Coimbatore, India.
  • N. Kalaivani Department of Mathematics, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India.
  • G. Sai Sundara Krishnan Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore, India.
  • Pages: 268-276
  • Date Published: 01-07-2015
  • Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)

C. Boonpok, $zeta_mu$-Sets in generalized topological spaces, Acta Math. Hunger., 134 (3) (2012), 269 - 285. DOI: https://doi.org/10.1007/s10474-011-0106-2

A. Csaszar, Generalized open sets, Acta Math. Hunger., 75 (1997), 65 - 87. DOI: https://doi.org/10.1023/A:1006582718102

A. Csaszar, On the $gamma$-interior and $gamma$-closure of a set, Acta Math. Hungar., 80 (1998), 89 - 93. DOI: https://doi.org/10.1023/A:1006572725660

A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351 - 357. DOI: https://doi.org/10.1023/A:1019713018007

A. Csaszar, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest., 47 (2004), 9196.

A. Csaszar, Separation axioms for generalized topologies, Acta Math. Hungar., 104 (1-2) (2004), 63 - 69. DOI: https://doi.org/10.1023/B:AMHU.0000034362.97008.c6

A. Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar., 105 (2005), 53 - 66. DOI: https://doi.org/10.1007/s10474-005-0005-5

A. Csaszar, Further remarks on the formula for $gamma$-interior, Acta Math. Hungar., 113 (2006), 325 - 332. DOI: https://doi.org/10.1007/s10474-006-0109-6

A. Csaszar, Modificatons of generalized topologies via hereditary classes, Acta Math. Hungar., 115 (2007), 29 36. DOI: https://doi.org/10.1007/s10474-006-0531-9

A. Csaszar, Remark on quasi topologies, Acta Math. Hungar., 119 (2008), 197 - 200. DOI: https://doi.org/10.1007/s10474-007-7023-4

A. Csaszar, $delta$ and $theta$-modifications of generalized topologies, Acta Math. Hungar., 120 (2008), 275 - 279. DOI: https://doi.org/10.1007/s10474-007-7136-9

R. Jamunarani and P. Jeyanthi, Regular sets in generalized topological spaces, Acta Math. Hungar., 135 (2012), $342-349$. DOI: https://doi.org/10.1007/s10474-011-0179-y

M. S. Sarasak, New separation axioms in generalized topological spaces, Acta Math. Hungar., 132 (3) (2011), $244-252$. DOI: https://doi.org/10.1007/s10474-010-0066-y

P. Sivagami, Remarks on $gamma$-interior, Acta Math. Hungar., 119 (2008), 81 - 94. DOI: https://doi.org/10.1007/s10474-007-7007-4

  • NA

Metrics

Metrics Loading ...

Published

01-07-2015

How to Cite

D. Saravanakumar, N. Kalaivani, and G. Sai Sundara Krishnan. “On \(\tilde{\mu}\)-Open Sets in Generalized Topological Spaces”. Malaya Journal of Matematik, vol. 3, no. 03, July 2015, pp. 268-76, doi:10.26637/mjm303/005.