Mild solutions for semi-linear fractional order functional stochastic differential equations with impulse effect

Downloads

DOI:

https://doi.org/10.26637/mjm303/006

Abstract

This paper is concerned with the existence results of mild solution for an impulsive fractional order stochastic differential equation with infinite delay subject to nonlocal conditions. The results are obtained by using the fixed point techniques and solution operator generated by sectorial operator on a Hilbert space.

Keywords:

Fractional order differential equation, nonlocal conditions, existence and uniqueness, impulsive conditions, stochastic differential equations

Mathematics Subject Classification:

26A33, 34B10, 34A12, 34A37, 34K50
  • Mohd Nadeem b Department of Applied Science and Engineering, IIT Roorkee, Saharanpur Campus, Saharanpur-247001, India.
  • Jaydev Dabas Department of Applied Science and Engineering, IIT Roorkee, Saharanpur Campus, Saharanpur-247001, India.
  • Pages: 277-288
  • Date Published: 01-07-2015
  • Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)

D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal. TMA , 69(11)(2009), 3692-3705. DOI: https://doi.org/10.1016/j.na.2007.10.004

P. Balasubramaniam, J. Y. Park and A. V. A. Kumar, Existence of solutions for semilinear neutral stochastic functional differential equations with nonlocal conditions, Nonlinear Anal., 71(2009), 1049-1058. DOI: https://doi.org/10.1016/j.na.2008.11.032

E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, in: University Press Facilities, Eindhoven University of Technology, 2001.

D. Bhuguna, Existence, uniqueness and regularity of solution to semilinear nonlocal functional differential problems, Nonlinear Anal., 57 (2004), 1021-1028. DOI: https://doi.org/10.1016/j.na.2004.03.026

A. Chauhan and J. Dabas, Existence of mild solutions for impulsive fractional-order semilinear evolution equations with nonlocal conditions, Elect. J. of Diff. Equ., 2011(107)(2011), 1-10.

A. Chauhan and J. Dabas, Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition, Commun Nonli. Sci Numer Simu., 19(2014), 821-829. DOI: https://doi.org/10.1016/j.cnsns.2013.07.025

A. Chauhan, J. Dabas and M. Kumar, Integral boundary-value problem for impulsive fractional functional differential equations with infinite delay, Elect. J. of Diff. Equ., 2012(229)(2012), 1-13.

J. Dabas and A. Chauhan, Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay, Math. and Comp. Model., 57(2013), 754-763. DOI: https://doi.org/10.1016/j.mcm.2012.09.001

J. Dabas and G. R. Gautam, Impulsive neutral fractional integro-differential equations with state dependent delays and integral conditions, Elect. J. of Diff. Equ., 2013(273)(2013), 1-13.

K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. of Math. anal. and appl., 179(1993), 630-637. DOI: https://doi.org/10.1006/jmaa.1993.1373

G. R. Gautam and J. Dabas, Mild solution for fractional functional integro-differential equation with not instantaneous impulse, Malaya J. of Matematik, 2(3)(2014), 428-437. DOI: https://doi.org/10.26637/mjm204/010

M. Haase, The functional calculus for sectorial operators, Operator Theory, Advances and Applications, vol. 169, Birkhauser-Verlag, Basel, 2006. DOI: https://doi.org/10.1007/3-7643-7698-8

D. N. Keck and M. A. McKibben, Functional integro-differential stochastic evolution equations in hilbert spaces, J. of Appl. Math. and Sto. Anal., 16(2)(2003), 141-161. DOI: https://doi.org/10.1155/S1048953303000108

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006.

V. Lakshmikantham, Theory of fractional differential equations, Nonlinear Anal., 69(2008), 3337-3343. DOI: https://doi.org/10.1016/j.na.2007.09.025

C. Li, J. Sun and R. Sun, Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects, J. of the Franklin Institute, 347(2010), 1186-1198. DOI: https://doi.org/10.1016/j.jfranklin.2010.04.017

A. Lin, Y. Ren and N. Xia, On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators, Math. and Comp. Model., 51(2010), 413-424. DOI: https://doi.org/10.1016/j.mcm.2009.12.006

S. Longa, L. Teng and D. Xu, Global attracting set and stability of stochastic neutral partial functional differential equations with impulses, Statistics and Probability Letters, 82(2012), 1699-1709. DOI: https://doi.org/10.1016/j.spl.2012.05.018

I. Podlubny, Fractional Differential Equations, Academic Press, New York, USA, 1993.

Y. Ren and D. D. Sun, Second-order neutral stochastic evolution equations with infinite delay under carathodory conditions, Journal of Optimization Theory and Applications, 147(2010), 569-582. DOI: https://doi.org/10.1007/s10957-010-9727-9

Y. Ren, Q. Zhou and L. Chen, Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay, J. of Optim. Theo. and Appli., $149(2011), 315-331$ DOI: https://doi.org/10.1007/s10957-010-9792-0

R. Sakthivel, P. Revathi and Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlilear Anal., 81(2013), 70-86. DOI: https://doi.org/10.1016/j.na.2012.10.009

L. Shen, J. Shi and J. Sun, Complete controllability of impulsive stochastic integro-differential systems, Automatica, 46(2010), 1068-1073. DOI: https://doi.org/10.1016/j.automatica.2010.03.002

L. Shen and J. Sun, Approximate controllability of stochastic impulsive functional systems with infinite delay, Automatica, 48(2012), 2705-2709. DOI: https://doi.org/10.1016/j.automatica.2012.06.098

R. Subalakshmi and K. Balachandran, Approximate controllability of nonlinear stochastic impulsive intergrodifferential systems in Hilbert spaces, Chaos Solitons Fractals, 42(2009), 2035-2046. DOI: https://doi.org/10.1016/j.chaos.2009.03.166

E. Zeidler, Nonlinear Functional Analysis and Its Applications, Fixed-Point Theorems, Springer, New York (1986). DOI: https://doi.org/10.1007/978-1-4612-4838-5

  • NA

Metrics

Metrics Loading ...

Published

01-07-2015

How to Cite

Mohd Nadeem, and Jaydev Dabas. “Mild Solutions for Semi-Linear Fractional Order Functional Stochastic Differential Equations With Impulse Effect”. Malaya Journal of Matematik, vol. 3, no. 03, July 2015, pp. 277-88, doi:10.26637/mjm303/006.