Invariant solutions and conservation laws for a three-dimensional K-S equation

Downloads

DOI:

https://doi.org/10.26637/mjm303/008

Abstract

In this paper, we study three-dimensional Kudryashov-Sinelshchikov (K-S) equation, which describes long nonlinear pressure waves in a liquid containing gas bubbles. Firstly, We find the symmetry groups of the K-S equation. Secondly, using the symmetry groups, exact solutions which are invariant under a three-dimensional subalgebra of the symmetry Lie algebra are derived. Finally, by adding Bluman-Anco homotopy formula to the direct method local conservation laws of the K-S equation are obtained.

Keywords:

Three-dimensional Kudryashov-Sinelshchikov equation, Lie symmetry analysis, Invariant solution, Conservation laws

Mathematics Subject Classification:

58J70, 76M60, 35L65
  • Reza Dastranj Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
  • Mehdi Nadjafikhah School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 1684613114, Iran.
  • Megerdich Toomanian Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
  • Pages: 296-302
  • Date Published: 01-07-2015
  • Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)

A. Kudryashov, D.I. Sinelshchikov, An extended equation for the description of nonlinear waves in a liquid with gas bubbles, Wave Motion 50 (2013) 351-362. DOI: https://doi.org/10.1016/j.wavemoti.2012.10.001

N.A. Kudryashov, D.I. Sinelshchikov, Extended models of non-linear waves in liquid with gas bubbles, International Journal of Non-Linear Mechanics 63 (2014) 31-38. DOI: https://doi.org/10.1016/j.ijnonlinmec.2014.03.011

N.A. Kudryashov, D.I. Sinelshchikov, Equation for the three-dimensional nonlinear waves in liquid with gas bubbles, Phys. Scr. 85 (2012) 025402. DOI: https://doi.org/10.1088/0031-8949/85/02/025402

Y.L. Feng, W.R. Shan, W.R. Sun, H. Zhong, B. Tian, Bifurcation analysis and solutions of a threedimensional Kudryashov-Sinelshchikov equation in the bubbly liquid, Commun Nonlinear Sci Numer Simulat $19(2014)$ 880-886. DOI: https://doi.org/10.1016/j.cnsns.2013.08.001

G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, New York, 2002.

P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986. DOI: https://doi.org/10.1007/978-1-4684-0274-2

S. Lie, On integration of a class of linear partial differential equations by means of definite integrals, Archiv der Mathematik VI(3), 1881, 328-368 [in German]. Reprinted in S. Lie, Gesammelte Abhandlundgen, Vol. 3, paper XXXV. (English translation published in CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 2, N. H. Ibragimov (ed.), CRC Press, Boca Raton, FL, 1995.)

L.V. Ovsyannikov, Group Properties of Differential Equations, USSR Academy of Science, Siberian Branch, Novosibirsk. (English translation by G. W. Bluman, 1967, unpublished.)

V. A. Baikov, R. K. Gazizov, N. H. Ibragimov, V. F. Kovalev, Water Redistribution in Irrigated Soil Profiles: Invariant Solutions of the Governing Equation ,Nonlinear Dynamics August 1997, Volume 13, Issue 4, pp $395-409$. DOI: https://doi.org/10.1023/A:1008209125329

G.W. Bluman, AF. Cheviakov, S.C. Anco, Applications of symmetry methods to partial differential equations. New York: Springer, 2010. DOI: https://doi.org/10.1007/978-0-387-68028-6

S.C. Anco, G.W. Bluman, Direct construction of conservation laws. Phys. Rev. Lett (1997);78:2869-73. DOI: https://doi.org/10.1103/PhysRevLett.78.2869

S.C. Anco, G.W. Bluman, Direct construction method for conservation laws of partial differential equations part II: general treatment. Eur J Appl Math (2002);13:567-85. DOI: https://doi.org/10.1017/S0956792501004661

R. Dastranj, M. Nadjafikhah, Symmetry analysis and conservation laws for description of waves in bubbly liquid, International Journal of Non-Linear Mechanics 67 (2014) 48-51. DOI: https://doi.org/10.1016/j.ijnonlinmec.2014.07.007

  • NA

Metrics

Metrics Loading ...

Published

01-07-2015

How to Cite

Reza Dastranj, Mehdi Nadjafikhah, and Megerdich Toomanian. “Invariant Solutions and Conservation Laws for a Three-Dimensional K-S Equation”. Malaya Journal of Matematik, vol. 3, no. 03, July 2015, pp. 296-02, doi:10.26637/mjm303/008.