On semi-invariant submanifolds of a nearly trans-hyperbolic Sasakian manifold
Downloads
DOI:
https://doi.org/10.26637/mjm303/009Abstract
Semi-invariant submanifold of a trans Sasakian manifold has been studies. In the present paper we study semi invariant submanifolds of a nearly trans hyperbolic Sasakian manifold. Nejenhuis tensor in a nearly trans hyperbolic Sasakian manifold is calculated. Integrability conditions for some distributions on a semi invariant submanifold of a nearly trans hyperbolic Sasakian manifold are investigated.
Keywords:
Semi-invariant submanifolds, nearly trans hyperbolic Sasakian manifold, Gauss and Weingarten equations, integrability conditions, distributionsMathematics Subject Classification:
53D12, 53C05- Pages: 303-311
- Date Published: 01-07-2015
- Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)
A. Bejancu, On semi-invariant submanifold of an almost contact metric manifold, An. Stiint. Univ. AI. I. Cuza Iasi Sect. I a Mat. 27 (supplement) (1981), 17-21.
A. Bejancu, Geometry of CR-Submanifolds, D. Reidel publishing company, Holland, 1986. DOI: https://doi.org/10.1007/978-94-009-4604-0
A. Bejancu, D. Suraranda, ——Stint Univ. Al. Cuza.Iasi 29 (1983)27-32.
A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. Stin. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 27 (1981), 163-170.
A. Bejancu and N. Papaghiuc, Normal semi-invariant submanifolds of a Sasakian manifold, Mat.Vasnik $35(1983) 345-355$.
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer Verlag, 1976. DOI: https://doi.org/10.1007/BFb0079307
H. S. Gill and K. K. Dube, On CR submanifolds of trans-hyperbolic Sasakian manifolds, Demonstratio Math. 38 (2005), 953-960. DOI: https://doi.org/10.1515/dema-2005-0420
J. A. Oubina, New class of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187-193. DOI: https://doi.org/10.5486/PMD.1985.32.3-4.07
K. K. Dube and M. M. Mishra, Hypersurfaces immersed in an almost hyperbolic Hermitian manifold, Competes Rendus of Bulgarian Acad. of Sci. 34 (10) (1981), 1343-1345.
K. Matsumoto, M. H. Shahid and I. Mihai, Semi-invariant submanifold of certain almost contact manifolds, it Bull. Yamagata Univ. Natur. Sci. 13 (1994), 183-192.
Mobin Ahmad, S. Rahman and Mohd. Danish Siddiqi, On Semi Invariant Submanifolds of a Nearly Sasakian Manifold with a Semi Symmetric Metric,Bulletin of The Allahabad Mathematical Society Volume 25, (2010) 23-33.
M. Kobayashi, Semi-invariant submanifolds of a certain class of almost contact manifolds, Tensor 43 (1986), 28-36.
M. D. Upadhyay and K. K. Dube, Almost contact hyperbolic $(f, g, eta, xi)$-structure, Acta. Math. Acad. Scient. Hung., Tomus 28 (1976), 1-4. DOI: https://doi.org/10.1007/BF01902485
M. H. Shahid, On semi-invariant submanifolds of a nearly Sasakian manifold, Indian J. Pure Appl. Math. 24(1993), 571-580.
N. K. Joshi and K. K. Dube, Semi-invariant submanifold of an almost r-contact hyperbolic metric manifold, Demonstratio Math. 36 (2001), 135-143. DOI: https://doi.org/10.1515/dema-2001-0117
M. M. Tripathi, On CR submanifolds of nearly and closely cosymplectic manifolds, Ganita 51(2000), no. 1, 43-56.
- NA
Similar Articles
- Salahuddin, Vinesh Kumar, A curious summation formula in the light of Gamma function and contiguous relation , Malaya Journal of Matematik: Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)
- M .P. Chaudhary, Salahuddin, Sangeeta Chaudhary, Computation of a summation formula associated with certain special functions , Malaya Journal of Matematik: Vol. 3 No. 02 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.