Super edge-antimagic graceful labeling of graphs
Downloads
DOI:
https://doi.org/10.26637/mjm303/010Abstract
For a graph \(G=(V, E)\), a bijection \(g\) from \(V(G) \cup E(G)\) into \(\{1,2, \ldots,|V(G)|+|E(G)|\}\) is called \((a, d)\)-edge-antimagic graceful labeling of \(G\) if the edge-weights \(w(x y)=|g(x)+g(y)-g(x y)|, x y \in E(G)\), form an arithmetic progression starting from \(a\) and having a common difference \(d\). An \((a, d)\)-edge-antimagic graceful labeling is called super \((a, d)\)-edge-antimagic graceful if \(g(V(G))=\{1,2, \ldots,|V(G)|\}\). Note that the notion of super \((a, d)\)-edge-antimagic graceful graphs is a generalization of the article "G. Marimuthu and \(\mathrm{M}\). Balakrishnan, Super edge magic graceful graphs, Inf.Sci.287( 2014)140-151", since super \((a, 0)\)-edge-antimagic graceful graph is a super edge magic graceful graph.We study super \((a, d)\)-edge-antimagic graceful properties of certain classes of graphs, including complete graphs and complete bipartite graphs.
Keywords:
Edge-antimagic graceful labeling, Super edge-antimagic graceful labelingMathematics Subject Classification:
05C78- Pages: 312-317
- Date Published: 01-07-2015
- Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)
M. Baca, Y. Lin, M. Miller and M. Z. Youssef, Edge-antimagic graphs, Discrete Math., 307 (2007), 12321244. DOI: https://doi.org/10.1016/j.disc.2005.10.038
M. Baca and M. Miller, Super Edge-Antimgic Graphs : A Wealth of Problems and-Some Solutions, Brown Walker Press, Boca Raton, Fla, USA, 2008.
M. Baca and C. Barrientos, Graceful and edge antimagic labelings, Ars Combin., 96 (2010), 505-513.
M. Baca, E.T. Baskoro, R. Simanjuntak, K. A. Sugeng, Super edge-antimagic labelings of the generalized Petersen graph $Pleft(n, frac{n-1}{2}right)$, Util. Math., 70 (2006), 119-127.
M.O. Ball, B. L. Golden and R. V. Vohra, Finding the most vital arcs in a network, Oper. Res. Lett., 8 (1989), 73-76. DOI: https://doi.org/10.1016/0167-6377(89)90003-5
H. W. Corley and D. Y. Sha, Most vital links and nodes in weighted networks, Oper. Res. Lett., 1 (1982), $157-160$. DOI: https://doi.org/10.1016/0167-6377(82)90020-7
D. Dafik, M. Miller, J. Ryan and M. Baca, On super $(a, d)$-edge-antimagic total labeling of disconnected graphs, Discrete Math., 309 (2009), 4909-4915. DOI: https://doi.org/10.1016/j.disc.2008.04.031
H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J.Math., 34 ( 1998), 105-109. DOI: https://doi.org/10.55937/sut/991985322
R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math., 231 ( 2001), 153-168. DOI: https://doi.org/10.1016/S0012-365X(00)00314-9
J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 16 (2013), # DS6.
N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, San Diego, New York, London, 1990.
L. H. Hsu, R. H. Jan, Y. C. Lee, C. N. Hung and M. S. Chern, Finding the most vital edge with respect to minimum spanning tree in weighted graphs, Inform. Process. Lett., 39 (1991) 277-281. DOI: https://doi.org/10.1016/0020-0190(91)90028-G
J. Ivanco and I. Luckanicova, On edge-magic disconnected graphs, SUT J.Math., 38 (2002), 175-184. DOI: https://doi.org/10.55937/sut/1057898710
M. Javaid and A. A. Bhatti, On Super $(a, d)$-edge-antimagic total labeling of subdivided stars, Ars Combin., 105 (2012), 503-512.
A. Kotzig and A.Rosa, Magic valuations of complete graphs, CRM Publisher, 1972.
A. Kotzig and A.Rosa, Magic valuations of finite graphs, Canadian Mathematical Bulletin, 13 (1970), 451461. DOI: https://doi.org/10.4153/CMB-1970-084-1
M. J. Lee, On Super (a,1)-edge-antimagic total labelings of Cartesian Product Graphs, Journal of Discrete Mathematical Sciences and Cryptography, 16(2-3) (2013), 117-124. DOI: https://doi.org/10.1080/09720529.2013.778469
G. Marimuthu and M. Balakrishnan, Super edge magic graceful graphs, Inf. Sci., 287 ( 2014) 140-151. DOI: https://doi.org/10.1016/j.ins.2014.07.027
S. Rahmawati, D. R. Silaban , M. Miller and M. Baca, Constuction of new larger $(a, d)$-edge-antimagic vertex graphs by using adjacency matrices, Australian J. Combin., 56 (2013), 257-272.
P. RoshiniLeelyPushpam and A. Saibulla, On Super $(a, d)$-edge-antimagic total labeling of certain families of graphs, Discuss. Math. Graph Theory, 32(3) (2012), 535-543. DOI: https://doi.org/10.7151/dmgt.1623
P. Roshini Leely Pushpam and A. Saibulla, Super $(a, d)$-edge-antimagic total labelings of some classes of graphs, SUT J. Math., 48(1) (2012), 1-12. DOI: https://doi.org/10.55937/sut/1343931268
R. Simanjuntak, F. Bertault and M. Miller, Two new $(a, d)$-antimagic graph labelings, in: Proc. of $11^{text {th }}$ Australian Workshop of Combinatorial Algorithm, (2000), 179-189.
I. W. Sudarsana, D. Ismaimuza, E. T. Baskoro and H. Assiyatun, On super (a,d)-edge-antimagic total labeling of disconnected graphs, J. Combin. Math. Combin. Comput., 55 ( 2005), 149-158.
D. B. West, An Introduction to Graph Theory, Prentice Hall, Engelwood Cliffs, NJ, 1996.
- NA
Similar Articles
- Reza Dastranj, Mehdi Nadjafikhah, Megerdich Toomanian, Invariant solutions and conservation laws for a three-dimensional K-S equation , Malaya Journal of Matematik: Vol. 3 No. 03 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.