Common fixed point theorems in intuitionistic menger spaces using CLR property

Downloads

DOI:

https://doi.org/10.26637/mjm304/001

Abstract

We use the notion of CLR property to prove some common fixed point theorems for weakly compatible mappings in intuitionistic Menger spaces. Our theorems generalize and improve theorems of [5], [6], [7], [8], [10], [20] and [28].

Keywords:

Common fixed point, intuitionistic Menger space, weakly compatible mappings, CLR property, JCLR property

Mathematics Subject Classification:

47H10, 54H25
  • Leila Ben Aoua Laboratory of dynamical systems and control, Department of Mathematics and Informatics, Larbi Ben M’hidi University, Oum El Bouaghi, 04000, Algeria.
  • Abdelkrim Aliouche Laboratory of dynamical systems and control, Department of Mathematics and Informatics, Larbi Ben M’hidi University, Oum El Bouaghi, 04000, Algeria.
  • Pages: 368-381
  • Date Published: 01-10-2015
  • Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)

M. Aamri and D. El Moutawakil, some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270 (2002), 181-188 . DOI: https://doi.org/10.1016/S0022-247X(02)00059-8

K. Atanassov, Intuitionistic fuzzy sets. In: Sgurev, editor. VII ITKR's Session, Sofia June, 1983 (Central Sci. and Techn. Library, Bulg. Academy of Sciences, 1984).

K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Syst., 20 (1986), 87-96. DOI: https://doi.org/10.1016/S0165-0114(86)80034-3

S. Chauhan, W. Sintunavarat and P. Kumam, Common fixed point theorems for weakly compatible mappings in fuzzy metric spaces using (JCLR) property, Appl. Math., 3 (2012), 976-982. DOI: https://doi.org/10.4236/am.2012.39145

S. Chauhan, M. A. Khan and W. Sintunavarat, Common Fixed Point Theorems in Fuzzy Metric Spaces Satisfying $phi$-Contractive Condition with Common Limit Range Property, Abstract Appl. Anal., Volume 2013, Article ID 735217, 14 pages. DOI: https://doi.org/10.1155/2013/735217

S. Chauhan, S. Bhatnagar and S. Radenović, Common fixed point theorems for weakly compatible mappings in fuzzy metric spaces, Le Matematiche, Vol. LXVIII (2013) - Fasc. I, pp. 87-98. DOI: https://doi.org/10.1186/1687-1812-2013-220

S. Chauhan, S. Dalal, W. Sintunavarat and J. Vujakovic, Common property (E.A) and existence of fixed points in Menger spaces, J. Inequal. Appl., 2014, Article No. 56. DOI: https://doi.org/10.1186/1029-242X-2014-56

J. -X. Fang and Y. Gao, Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Anal., 70 (2009), 184-193. DOI: https://doi.org/10.1016/j.na.2007.11.045

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and syst., 64 (1994), 395-399. DOI: https://doi.org/10.1016/0165-0114(94)90162-7

J. Ali, M. Imdad, D. Mihet and M. Tanveer, Common fixed points of strict contractions in Menger spaces, Acta Math. Hung., 132 (4) (2011), 367-386. DOI: https://doi.org/10.1007/s10474-011-0105-3

M. Imdad, J. Ali and M. Tanveer, Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces, Chaos Solitons & Fractals 42 (5) (2009) 3121-3129. DOI: https://doi.org/10.1016/j.chaos.2009.04.017

M. Imdad, B. D. Pant and S. Chauhan, Fixed point theorems in Menger spaces using the CLR $_{S T}$ property and applications, J. Nonlinear Anal. Optim., 3 (2) (2012), 225-237.

G. Jungck, Compatible mappings and common fixed points, Inter. J. Math. & Math. Sci., 9 (1986), 771-773. DOI: https://doi.org/10.1155/S0161171286000935

G. Jungck, Common fixed points for non continuous non self-maps on non metric spaces, Far East J. Math. Sci., $4(1996), 199-215$.

O. Kramosil and J. Michalek, Fuzzy metric and statistical spaces, Kybernetica, 11 (1975), $326-334$.

I. Kubiaczyk and S. Sharma, Some common fixed point theorems in Menger space under strict contractive conditions, Southeast Asian Bull. Math., 32 (2008), 117-124.

S. Kutukcu A. Tuna and A. T. Yakut, Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations, Appl. Math. & Mech., 28 (6) (2007), 799-809. DOI: https://doi.org/10.1007/s10483-007-0610-z

Y. Liu, J. Wu and Z. Li, Common fixed points of single-valued and multi-valued maps, Internat. J. Math. Math. Sci., 19 (2005), 3045-3055. DOI: https://doi.org/10.1155/IJMMS.2005.3045

R. Lowen, Fuzzy set theory, Dordrecht: Kluwer Academic Publishers, 1996. DOI: https://doi.org/10.1007/978-94-015-8741-9

S. Manro and C. Vetro, Common fixed point theorems in fuzzy metric spaces employing CLR C and JCLR $_{S T}$ properties, Facta Universitatis (NIŜ), Ser. Math. Inform., 29 (1) (2014), 77-90

K. Menger, Statistical metrics, Proc. Nat. acad. Sci. U.S.A, 28 (1942), 535-537. DOI: https://doi.org/10.1073/pnas.28.12.535

S. N. Mishra, Common fixed points of compatible mappings in probabilistic metric spaces, Math. Japon, $36(1991), 283-289$

B. D. Pant, S. Chauhan and V. Pant, Comon fixed point theorems in intuitionistic Menger spaces, J. Advan. Stud. Topology, 1 (2010), 54-62. DOI: https://doi.org/10.20454/jast.2010.206

J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitions & Fractals, 22 (2004), 1039-1046. DOI: https://doi.org/10.1016/j.chaos.2004.02.051

K. P. R. Sastry and I. S. R. Krishna Murthy, Common fixed points of two partially commuting tangential self-maps on a metric Space, J. Math. Anal. Appl., 250 (2000) 731-734. DOI: https://doi.org/10.1006/jmaa.2000.7082

B. Schweizer and A. Sklar, Statistical metric spaces. Pacific J. Math., 10 (1960), 313–334. DOI: https://doi.org/10.2140/pjm.1960.10.313

B. Schweizer and A. Sklar, Probabilistic metric spaces. Elsevier, North-Holland, New York, 1983.

S. Sedghi, N. Shobe and A. Aliouche, A common fixed point theorem for weakly compatible mappings in fuzzy metric spaces. Gen. Math., 18 (3) (2010), 3-12.

V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings in PM-spaces, Math. System Theory, $6(1972), 97-102$. DOI: https://doi.org/10.1007/BF01706080

B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. $301(2005)$, 439-448. DOI: https://doi.org/10.1016/j.jmaa.2004.07.036

W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in Fuzzy Metric Spaces, J. Appl. Math., Vol. 2011, Article ID 637958, pp. 14, DOI: 10.1155/2011/637958. DOI: https://doi.org/10.1155/2011/637958

L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

  • NA

Similar Articles

You may also start an advanced similarity search for this article.

Metrics

Metrics Loading ...

Published

01-10-2015

How to Cite

Leila Ben Aoua, and Abdelkrim Aliouche. “Common Fixed Point Theorems in Intuitionistic Menger Spaces Using CLR Property”. Malaya Journal of Matematik, vol. 3, no. 04, Oct. 2015, pp. 368-81, doi:10.26637/mjm304/001.